| @@ -117,7 +117,7 @@ class WithGradCell(Cell): | |||||
| self.network = network | self.network = network | ||||
| self.loss_fn = loss_fn | self.loss_fn = loss_fn | ||||
| self.weights = ParameterTuple(network.trainable_params()) | self.weights = ParameterTuple(network.trainable_params()) | ||||
| self.grad = C.GradOperation('grad', get_by_list=True, sens_param=(sens is not None)) | |||||
| self.grad = C.GradOperation(get_by_list=True, sens_param=(sens is not None)) | |||||
| self.sens = sens | self.sens = sens | ||||
| if loss_fn is None: | if loss_fn is None: | ||||
| self.network_with_loss = network | self.network_with_loss = network | ||||
| @@ -182,7 +182,7 @@ class TrainOneStepCell(Cell): | |||||
| self.network.add_flags(defer_inline=True) | self.network.add_flags(defer_inline=True) | ||||
| self.weights = optimizer.parameters | self.weights = optimizer.parameters | ||||
| self.optimizer = optimizer | self.optimizer = optimizer | ||||
| self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) | |||||
| self.grad = C.GradOperation(get_by_list=True, sens_param=True) | |||||
| self.sens = sens | self.sens = sens | ||||
| self.reducer_flag = False | self.reducer_flag = False | ||||
| self.grad_reducer = None | self.grad_reducer = None | ||||
| @@ -269,7 +269,7 @@ class DistributedGradReducer(Cell): | |||||
| >>> self.network.add_flags(defer_inline=True) | >>> self.network.add_flags(defer_inline=True) | ||||
| >>> self.weights = optimizer.parameters | >>> self.weights = optimizer.parameters | ||||
| >>> self.optimizer = optimizer | >>> self.optimizer = optimizer | ||||
| >>> self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) | |||||
| >>> self.grad = C.GradOperation(get_by_list=True, sens_param=True) | |||||
| >>> self.sens = sens | >>> self.sens = sens | ||||
| >>> self.reducer_flag = False | >>> self.reducer_flag = False | ||||
| >>> self.grad_reducer = None | >>> self.grad_reducer = None | ||||
| @@ -210,7 +210,7 @@ class TrainOneStepWithLossScaleCell(Cell): | |||||
| self.network.add_flags(defer_inline=True) | self.network.add_flags(defer_inline=True) | ||||
| self.weights = optimizer.parameters | self.weights = optimizer.parameters | ||||
| self.optimizer = optimizer | self.optimizer = optimizer | ||||
| self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) | |||||
| self.grad = C.GradOperation(get_by_list=True, sens_param=True) | |||||
| self.hyper_map = C.HyperMap() | self.hyper_map = C.HyperMap() | ||||
| if context.get_context("device_target") == "GPU": | if context.get_context("device_target") == "GPU": | ||||
| self.gpu_target = True | self.gpu_target = True | ||||
| @@ -106,12 +106,11 @@ class GradOperation(GradOperation_): | |||||
| a 'ones_like(outputs)' sensitivity will be attached automatically. Default: False. | a 'ones_like(outputs)' sensitivity will be attached automatically. Default: False. | ||||
| """ | """ | ||||
| def __init__(self, name, | |||||
| get_all=False, get_by_list=False, sens_param=False): | |||||
| def __init__(self, get_all=False, get_by_list=False, sens_param=False): | |||||
| self.get_all = get_all | self.get_all = get_all | ||||
| self.get_by_list = get_by_list | self.get_by_list = get_by_list | ||||
| self.sens_param = sens_param | self.sens_param = sens_param | ||||
| GradOperation_.__init__(self, name, get_all, get_by_list, sens_param) | |||||
| GradOperation_.__init__(self, 'grad', get_all, get_by_list, sens_param) | |||||
| self.grad_fn = None | self.grad_fn = None | ||||
| self.fn = None | self.fn = None | ||||
| self.need_forward = False | self.need_forward = False | ||||
| @@ -139,7 +138,7 @@ class GradOperation(GradOperation_): | |||||
| fn.already_run = False | fn.already_run = False | ||||
| def __call__(self, fn, weights=None): | def __call__(self, fn, weights=None): | ||||
| grad_ = GradOperation('grad', self.get_all, self.get_by_list, self.sens_param) | |||||
| grad_ = GradOperation(self.get_all, self.get_by_list, self.sens_param) | |||||
| if self.grad_fn is None or self.fn != fn: | if self.grad_fn is None or self.fn != fn: | ||||
| if context.get_context("mode") == context.GRAPH_MODE: | if context.get_context("mode") == context.GRAPH_MODE: | ||||
| if self.get_by_list: | if self.get_by_list: | ||||
| @@ -216,7 +216,7 @@ class InsertGradientOf(PrimitiveWithInfer): | |||||
| >>> return ret | >>> return ret | ||||
| >>> | >>> | ||||
| >>> clip = P.InsertGradientOf(clip_gradient) | >>> clip = P.InsertGradientOf(clip_gradient) | ||||
| >>> grad_all = C.GradOperation('get_all', get_all=True) | |||||
| >>> grad_all = C.GradOperation(get_all=True) | |||||
| >>> def InsertGradientOfClipDemo(): | >>> def InsertGradientOfClipDemo(): | ||||
| >>> def clip_test(x, y): | >>> def clip_test(x, y): | ||||
| >>> x = clip(x) | >>> x = clip(x) | ||||
| @@ -268,7 +268,7 @@ class HookBackward(PrimitiveWithInfer): | |||||
| >>> def hook_fn(grad_out): | >>> def hook_fn(grad_out): | ||||
| >>> print(grad_out) | >>> print(grad_out) | ||||
| >>> | >>> | ||||
| >>> grad_all = GradOperation('get_all', get_all=True) | |||||
| >>> grad_all = GradOperation(get_all=True) | |||||
| >>> hook = P.HookBackward(hook_fn) | >>> hook = P.HookBackward(hook_fn) | ||||
| >>> | >>> | ||||
| >>> def hook_test(x, y): | >>> def hook_test(x, y): | ||||
| @@ -163,8 +163,7 @@ class TrainOneStepCell(nn.Cell): | |||||
| self.backbone = network_backbone | self.backbone = network_backbone | ||||
| self.weights = ParameterTuple(network.trainable_params()) | self.weights = ParameterTuple(network.trainable_params()) | ||||
| self.optimizer = optimizer | self.optimizer = optimizer | ||||
| self.grad = C.GradOperation('grad', | |||||
| get_by_list=True, | |||||
| self.grad = C.GradOperation(get_by_list=True, | |||||
| sens_param=True) | sens_param=True) | ||||
| self.sens = Tensor((np.ones((1,)) * sens).astype(np.float16)) | self.sens = Tensor((np.ones((1,)) * sens).astype(np.float16)) | ||||
| self.reduce_flag = reduce_flag | self.reduce_flag = reduce_flag | ||||
| @@ -171,8 +171,7 @@ class TrainOneStepCell(nn.Cell): | |||||
| self.backbone = network_backbone | self.backbone = network_backbone | ||||
| self.weights = ParameterTuple(network.trainable_params()) | self.weights = ParameterTuple(network.trainable_params()) | ||||
| self.optimizer = optimizer | self.optimizer = optimizer | ||||
| self.grad = C.GradOperation('grad', | |||||
| get_by_list=True, | |||||
| self.grad = C.GradOperation(get_by_list=True, | |||||
| sens_param=True) | sens_param=True) | ||||
| self.sens = Tensor((np.ones((1,)) * sens).astype(np.float16)) | self.sens = Tensor((np.ones((1,)) * sens).astype(np.float16)) | ||||
| self.reduce_flag = reduce_flag | self.reduce_flag = reduce_flag | ||||
| @@ -119,7 +119,7 @@ class DistributedGradReducerThor(Cell): | |||||
| >>> self.network.add_flags(defer_inline=True) | >>> self.network.add_flags(defer_inline=True) | ||||
| >>> self.weights = ParameterTuple(network.trainable_params()) | >>> self.weights = ParameterTuple(network.trainable_params()) | ||||
| >>> self.optimizer = optimizer | >>> self.optimizer = optimizer | ||||
| >>> self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) | |||||
| >>> self.grad = C.GradOperation(get_by_list=True, sens_param=True) | |||||
| >>> self.sens = sens | >>> self.sens = sens | ||||
| >>> self.reducer_flag = False | >>> self.reducer_flag = False | ||||
| >>> self.grad_reducer = None | >>> self.grad_reducer = None | ||||
| @@ -383,7 +383,7 @@ class TrainingWrapper(nn.Cell): | |||||
| self.network = network | self.network = network | ||||
| self.weights = ms.ParameterTuple(network.trainable_params()) | self.weights = ms.ParameterTuple(network.trainable_params()) | ||||
| self.optimizer = optimizer | self.optimizer = optimizer | ||||
| self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) | |||||
| self.grad = C.GradOperation(get_by_list=True, sens_param=True) | |||||
| self.sens = sens | self.sens = sens | ||||
| self.reducer_flag = False | self.reducer_flag = False | ||||
| self.grad_reducer = None | self.grad_reducer = None | ||||
| @@ -77,7 +77,7 @@ class TrainOneStepCellWithGradClip(Cell): | |||||
| self.network.add_flags(defer_inline=True) | self.network.add_flags(defer_inline=True) | ||||
| self.weights = optimizer.parameters | self.weights = optimizer.parameters | ||||
| self.optimizer = optimizer | self.optimizer = optimizer | ||||
| self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) | |||||
| self.grad = C.GradOperation(get_by_list=True, sens_param=True) | |||||
| self.sens = sens | self.sens = sens | ||||
| self.reducer_flag = False | self.reducer_flag = False | ||||
| self.grad_reducer = None | self.grad_reducer = None | ||||
| @@ -412,7 +412,7 @@ class TrainingWrapper(nn.Cell): | |||||
| self.network = network | self.network = network | ||||
| self.weights = optimizer.parameters | self.weights = optimizer.parameters | ||||
| self.optimizer = optimizer | self.optimizer = optimizer | ||||
| self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) | |||||
| self.grad = C.GradOperation(get_by_list=True, sens_param=True) | |||||
| self.sens = sens | self.sens = sens | ||||
| self.reducer_flag = False | self.reducer_flag = False | ||||
| self.grad_reducer = None | self.grad_reducer = None | ||||
| @@ -412,7 +412,7 @@ class TrainingWrapper(nn.Cell): | |||||
| self.network = network | self.network = network | ||||
| self.weights = optimizer.parameters | self.weights = optimizer.parameters | ||||
| self.optimizer = optimizer | self.optimizer = optimizer | ||||
| self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) | |||||
| self.grad = C.GradOperation(get_by_list=True, sens_param=True) | |||||
| self.sens = sens | self.sens = sens | ||||
| self.reducer_flag = False | self.reducer_flag = False | ||||
| self.grad_reducer = None | self.grad_reducer = None | ||||
| @@ -647,7 +647,7 @@ class TrainingWrapper(nn.Cell): | |||||
| self.network = network | self.network = network | ||||
| self.weights = ms.ParameterTuple(network.trainable_params()) | self.weights = ms.ParameterTuple(network.trainable_params()) | ||||
| self.optimizer = optimizer | self.optimizer = optimizer | ||||
| self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) | |||||
| self.grad = C.GradOperation(get_by_list=True, sens_param=True) | |||||
| self.sens = sens | self.sens = sens | ||||
| self.reducer_flag = False | self.reducer_flag = False | ||||
| self.grad_reducer = None | self.grad_reducer = None | ||||
| @@ -141,7 +141,7 @@ class TrainOneStepCell(nn.Cell): | |||||
| self.network.add_flags(defer_inline=True) | self.network.add_flags(defer_inline=True) | ||||
| self.weights = ParameterTuple(network.trainable_params()) | self.weights = ParameterTuple(network.trainable_params()) | ||||
| self.optimizer = optimizer | self.optimizer = optimizer | ||||
| self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) | |||||
| self.grad = C.GradOperation(get_by_list=True, sens_param=True) | |||||
| self.sens = sens | self.sens = sens | ||||
| def construct(self): | def construct(self): | ||||
| @@ -150,7 +150,7 @@ class TrainOneStepCell(nn.Cell): | |||||
| self.network.add_flags(defer_inline=True) | self.network.add_flags(defer_inline=True) | ||||
| self.weights = ParameterTuple(network.trainable_params()) | self.weights = ParameterTuple(network.trainable_params()) | ||||
| self.optimizer = optimizer | self.optimizer = optimizer | ||||
| self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) | |||||
| self.grad = C.GradOperation(get_by_list=True, sens_param=True) | |||||
| self.sens = sens | self.sens = sens | ||||
| def construct(self): | def construct(self): | ||||
| @@ -57,8 +57,7 @@ class BertFinetuneCell(nn.Cell): | |||||
| self.network = network | self.network = network | ||||
| self.weights = optimizer.parameters | self.weights = optimizer.parameters | ||||
| self.optimizer = optimizer | self.optimizer = optimizer | ||||
| self.grad = C.GradOperation('grad', | |||||
| get_by_list=True, | |||||
| self.grad = C.GradOperation(get_by_list=True, | |||||
| sens_param=True) | sens_param=True) | ||||
| self.reducer_flag = False | self.reducer_flag = False | ||||
| self.allreduce = P.AllReduce() | self.allreduce = P.AllReduce() | ||||
| @@ -160,7 +159,7 @@ class BertSquadCell(nn.Cell): | |||||
| self.network = network | self.network = network | ||||
| self.weights = optimizer.parameters | self.weights = optimizer.parameters | ||||
| self.optimizer = optimizer | self.optimizer = optimizer | ||||
| self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) | |||||
| self.grad = C.GradOperation(get_by_list=True, sens_param=True) | |||||
| self.reducer_flag = False | self.reducer_flag = False | ||||
| self.allreduce = P.AllReduce() | self.allreduce = P.AllReduce() | ||||
| self.parallel_mode = context.get_auto_parallel_context("parallel_mode") | self.parallel_mode = context.get_auto_parallel_context("parallel_mode") | ||||
| @@ -274,7 +274,7 @@ class BertTrainOneStepCell(nn.Cell): | |||||
| self.network = network | self.network = network | ||||
| self.weights = optimizer.parameters | self.weights = optimizer.parameters | ||||
| self.optimizer = optimizer | self.optimizer = optimizer | ||||
| self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) | |||||
| self.grad = C.GradOperation(get_by_list=True, sens_param=True) | |||||
| self.sens = sens | self.sens = sens | ||||
| self.reducer_flag = False | self.reducer_flag = False | ||||
| self.parallel_mode = context.get_auto_parallel_context("parallel_mode") | self.parallel_mode = context.get_auto_parallel_context("parallel_mode") | ||||
| @@ -353,8 +353,7 @@ class BertTrainOneStepWithLossScaleCell(nn.Cell): | |||||
| self.network = network | self.network = network | ||||
| self.weights = optimizer.parameters | self.weights = optimizer.parameters | ||||
| self.optimizer = optimizer | self.optimizer = optimizer | ||||
| self.grad = C.GradOperation('grad', | |||||
| get_by_list=True, | |||||
| self.grad = C.GradOperation(get_by_list=True, | |||||
| sens_param=True) | sens_param=True) | ||||
| self.reducer_flag = False | self.reducer_flag = False | ||||
| self.allreduce = P.AllReduce() | self.allreduce = P.AllReduce() | ||||
| @@ -293,7 +293,7 @@ class BertTrainOneStepCell(nn.Cell): | |||||
| self.network = network | self.network = network | ||||
| self.weights = optimizer.parameters | self.weights = optimizer.parameters | ||||
| self.optimizer = optimizer | self.optimizer = optimizer | ||||
| self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) | |||||
| self.grad = C.GradOperation(get_by_list=True, sens_param=True) | |||||
| self.sens = sens | self.sens = sens | ||||
| self.reducer_flag = False | self.reducer_flag = False | ||||
| self.parallel_mode = context.get_auto_parallel_context("parallel_mode") | self.parallel_mode = context.get_auto_parallel_context("parallel_mode") | ||||
| @@ -373,8 +373,7 @@ class BertTrainOneStepWithLossScaleCell(nn.Cell): | |||||
| self.network = network | self.network = network | ||||
| self.weights = optimizer.parameters | self.weights = optimizer.parameters | ||||
| self.optimizer = optimizer | self.optimizer = optimizer | ||||
| self.grad = C.GradOperation('grad', | |||||
| get_by_list=True, | |||||
| self.grad = C.GradOperation(get_by_list=True, | |||||
| sens_param=True) | sens_param=True) | ||||
| self.reducer_flag = False | self.reducer_flag = False | ||||
| self.allreduce = P.AllReduce() | self.allreduce = P.AllReduce() | ||||
| @@ -119,7 +119,7 @@ class DistributedGradReducerThor(Cell): | |||||
| >>> self.network.add_flags(defer_inline=True) | >>> self.network.add_flags(defer_inline=True) | ||||
| >>> self.weights = ParameterTuple(network.trainable_params()) | >>> self.weights = ParameterTuple(network.trainable_params()) | ||||
| >>> self.optimizer = optimizer | >>> self.optimizer = optimizer | ||||
| >>> self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) | |||||
| >>> self.grad = C.GradOperation(get_by_list=True, sens_param=True) | |||||
| >>> self.sens = sens | >>> self.sens = sens | ||||
| >>> self.reducer_flag = False | >>> self.reducer_flag = False | ||||
| >>> self.grad_reducer = None | >>> self.grad_reducer = None | ||||
| @@ -239,7 +239,7 @@ class TransformerTrainOneStepWithLossScaleCell(nn.Cell): | |||||
| self.network.add_flags(defer_inline=True) | self.network.add_flags(defer_inline=True) | ||||
| self.weights = optimizer.parameters | self.weights = optimizer.parameters | ||||
| self.optimizer = optimizer | self.optimizer = optimizer | ||||
| self.grad = C.GradOperation('grad', get_by_list=True, | |||||
| self.grad = C.GradOperation(get_by_list=True, | |||||
| sens_param=True) | sens_param=True) | ||||
| self.reducer_flag = False | self.reducer_flag = False | ||||
| self.all_reduce = P.AllReduce() | self.all_reduce = P.AllReduce() | ||||
| @@ -218,8 +218,7 @@ class BertTrainWithLossScaleCell(nn.Cell): | |||||
| self.network = network | self.network = network | ||||
| self.weights = optimizer.parameters | self.weights = optimizer.parameters | ||||
| self.optimizer = optimizer | self.optimizer = optimizer | ||||
| self.grad = C.GradOperation('grad', | |||||
| get_by_list=True, | |||||
| self.grad = C.GradOperation(get_by_list=True, | |||||
| sens_param=True) | sens_param=True) | ||||
| self.reducer_flag = False | self.reducer_flag = False | ||||
| self.allreduce = P.AllReduce() | self.allreduce = P.AllReduce() | ||||
| @@ -310,8 +309,7 @@ class BertTrainCell(nn.Cell): | |||||
| self.weights = optimizer.parameters | self.weights = optimizer.parameters | ||||
| self.optimizer = optimizer | self.optimizer = optimizer | ||||
| self.sens = sens | self.sens = sens | ||||
| self.grad = C.GradOperation('grad', | |||||
| get_by_list=True, | |||||
| self.grad = C.GradOperation(get_by_list=True, | |||||
| sens_param=True) | sens_param=True) | ||||
| self.reducer_flag = False | self.reducer_flag = False | ||||
| self.parallel_mode = context.get_auto_parallel_context("parallel_mode") | self.parallel_mode = context.get_auto_parallel_context("parallel_mode") | ||||
| @@ -474,8 +472,7 @@ class BertEvaluationWithLossScaleCell(nn.Cell): | |||||
| self.network = network | self.network = network | ||||
| self.weights = optimizer.parameters | self.weights = optimizer.parameters | ||||
| self.optimizer = optimizer | self.optimizer = optimizer | ||||
| self.grad = C.GradOperation('grad', | |||||
| get_by_list=True, | |||||
| self.grad = C.GradOperation(get_by_list=True, | |||||
| sens_param=True) | sens_param=True) | ||||
| self.reducer_flag = False | self.reducer_flag = False | ||||
| self.allreduce = P.AllReduce() | self.allreduce = P.AllReduce() | ||||
| @@ -562,8 +559,7 @@ class BertEvaluationCell(nn.Cell): | |||||
| self.weights = optimizer.parameters | self.weights = optimizer.parameters | ||||
| self.optimizer = optimizer | self.optimizer = optimizer | ||||
| self.sens = sens | self.sens = sens | ||||
| self.grad = C.GradOperation('grad', | |||||
| get_by_list=True, | |||||
| self.grad = C.GradOperation(get_by_list=True, | |||||
| sens_param=True) | sens_param=True) | ||||
| self.reducer_flag = False | self.reducer_flag = False | ||||
| self.parallel_mode = context.get_auto_parallel_context("parallel_mode") | self.parallel_mode = context.get_auto_parallel_context("parallel_mode") | ||||
| @@ -158,7 +158,7 @@ class TransformerTrainOneStepCell(nn.Cell): | |||||
| self.network = network | self.network = network | ||||
| self.weights = ParameterTuple(network.trainable_params()) | self.weights = ParameterTuple(network.trainable_params()) | ||||
| self.optimizer = optimizer | self.optimizer = optimizer | ||||
| self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) | |||||
| self.grad = C.GradOperation(get_by_list=True, sens_param=True) | |||||
| self.sens = sens | self.sens = sens | ||||
| self.reducer_flag = False | self.reducer_flag = False | ||||
| self.parallel_mode = context.get_auto_parallel_context("parallel_mode") | self.parallel_mode = context.get_auto_parallel_context("parallel_mode") | ||||
| @@ -244,8 +244,7 @@ class TransformerTrainOneStepWithLossScaleCell(nn.Cell): | |||||
| self.network.add_flags(defer_inline=True) | self.network.add_flags(defer_inline=True) | ||||
| self.weights = ParameterTuple(network.trainable_params()) | self.weights = ParameterTuple(network.trainable_params()) | ||||
| self.optimizer = optimizer | self.optimizer = optimizer | ||||
| self.grad = C.GradOperation('grad', | |||||
| get_by_list=True, | |||||
| self.grad = C.GradOperation(get_by_list=True, | |||||
| sens_param=True) | sens_param=True) | ||||
| self.reducer_flag = False | self.reducer_flag = False | ||||
| self.allreduce = P.AllReduce() | self.allreduce = P.AllReduce() | ||||
| @@ -286,7 +286,7 @@ class TrainStepWrap(nn.Cell): | |||||
| self.weights = ParameterTuple(network.trainable_params()) | self.weights = ParameterTuple(network.trainable_params()) | ||||
| self.optimizer = Adam(self.weights, learning_rate=lr, eps=eps, loss_scale=loss_scale) | self.optimizer = Adam(self.weights, learning_rate=lr, eps=eps, loss_scale=loss_scale) | ||||
| self.hyper_map = C.HyperMap() | self.hyper_map = C.HyperMap() | ||||
| self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) | |||||
| self.grad = C.GradOperation(get_by_list=True, sens_param=True) | |||||
| self.sens = loss_scale | self.sens = loss_scale | ||||
| def construct(self, batch_ids, batch_wts, label): | def construct(self, batch_ids, batch_wts, label): | ||||
| @@ -337,9 +337,9 @@ class TrainStepWrap(nn.Cell): | |||||
| self.optimizer_w = FTRL(learning_rate=5e-2, params=self.weights_w, | self.optimizer_w = FTRL(learning_rate=5e-2, params=self.weights_w, | ||||
| l1=1e-8, l2=1e-8, initial_accum=1.0, loss_scale=sens) | l1=1e-8, l2=1e-8, initial_accum=1.0, loss_scale=sens) | ||||
| self.hyper_map = C.HyperMap() | self.hyper_map = C.HyperMap() | ||||
| self.grad_w = C.GradOperation('grad_w', get_by_list=True, | |||||
| self.grad_w = C.GradOperation(get_by_list=True, | |||||
| sens_param=True) | sens_param=True) | ||||
| self.grad_d = C.GradOperation('grad_d', get_by_list=True, | |||||
| self.grad_d = C.GradOperation(get_by_list=True, | |||||
| sens_param=True) | sens_param=True) | ||||
| self.sens = sens | self.sens = sens | ||||
| self.loss_net_w = IthOutputCell(network, output_index=0) | self.loss_net_w = IthOutputCell(network, output_index=0) | ||||
| @@ -537,11 +537,9 @@ class TrainStepWrap(nn.Cell): | |||||
| self.hyper_map = C.HyperMap() | self.hyper_map = C.HyperMap() | ||||
| self.grad_w = C.GradOperation('grad_w', | |||||
| get_by_list=True, | |||||
| self.grad_w = C.GradOperation(get_by_list=True, | |||||
| sens_param=True) | sens_param=True) | ||||
| self.grad_d = C.GradOperation('grad_d', | |||||
| get_by_list=True, | |||||
| self.grad_d = C.GradOperation(get_by_list=True, | |||||
| sens_param=True) | sens_param=True) | ||||
| self.sens = sens | self.sens = sens | ||||
| @@ -46,5 +46,5 @@ class CompileBackwardBlockWrtInputsBC(IBuilderComponent): | |||||
| """ | """ | ||||
| def __call__(self): | def __call__(self): | ||||
| grad_op = GradOperation('grad', get_all=True, sens_param=True) | |||||
| grad_op = GradOperation(get_all=True, sens_param=True) | |||||
| return create_funcs(self.verification_set, gen_grad_net, compile_block, grad_op) | return create_funcs(self.verification_set, gen_grad_net, compile_block, grad_op) | ||||
| @@ -46,5 +46,5 @@ class CompileBackwardBlockWrtParamsBC(IBuilderComponent): | |||||
| """ | """ | ||||
| def __call__(self, verification_set): | def __call__(self, verification_set): | ||||
| grad_op = GradOperation('grad', get_by_list=True, sens_param=True) | |||||
| grad_op = GradOperation(get_by_list=True, sens_param=True) | |||||
| return create_funcs(self.verification_set, gen_grad_net, compile_block, grad_op) | return create_funcs(self.verification_set, gen_grad_net, compile_block, grad_op) | ||||
| @@ -22,5 +22,5 @@ from ...utils.block_util import run_block, gen_grad_net, create_funcs, get_unifo | |||||
| class RunBackwardBlockWrtInputsWithRandParamBC(IBuilderComponent): | class RunBackwardBlockWrtInputsWithRandParamBC(IBuilderComponent): | ||||
| def __call__(self): | def __call__(self): | ||||
| grad_op = GradOperation('grad', get_all=True, sens_param=True) | |||||
| grad_op = GradOperation(get_all=True, sens_param=True) | |||||
| return create_funcs(self.verification_set, gen_grad_net, run_block, grad_op, get_uniform_with_shape) | return create_funcs(self.verification_set, gen_grad_net, run_block, grad_op, get_uniform_with_shape) | ||||
| @@ -22,5 +22,5 @@ from ...utils.block_util import run_block, gen_grad_net, create_funcs, get_unifo | |||||
| class RunBackwardBlockWrtParamsWithRandParamBC(IBuilderComponent): | class RunBackwardBlockWrtParamsWithRandParamBC(IBuilderComponent): | ||||
| def __call__(self): | def __call__(self): | ||||
| grad_op = GradOperation('grad', get_by_list=True, sens_param=True) | |||||
| grad_op = GradOperation(get_by_list=True, sens_param=True) | |||||
| return create_funcs(self.verification_set, gen_grad_net, run_block, grad_op, get_uniform_with_shape) | return create_funcs(self.verification_set, gen_grad_net, run_block, grad_op, get_uniform_with_shape) | ||||
| @@ -22,5 +22,5 @@ from ...utils.block_util import run_block, gen_grad_net, create_funcs | |||||
| class RunBackwardBlockWrtInputsBC(IBuilderComponent): | class RunBackwardBlockWrtInputsBC(IBuilderComponent): | ||||
| def __call__(self): | def __call__(self): | ||||
| grad_op = GradOperation('grad', get_all=True, sens_param=True) | |||||
| grad_op = GradOperation(get_all=True, sens_param=True) | |||||
| return create_funcs(self.verification_set, gen_grad_net, run_block, grad_op) | return create_funcs(self.verification_set, gen_grad_net, run_block, grad_op) | ||||
| @@ -22,5 +22,5 @@ from ...utils.block_util import run_block, gen_grad_net, create_funcs | |||||
| class RunBackwardBlockWrtParamsBC(IBuilderComponent): | class RunBackwardBlockWrtParamsBC(IBuilderComponent): | ||||
| def __call__(self): | def __call__(self): | ||||
| grad_op = GradOperation('grad', get_by_list=True, sens_param=True) | |||||
| grad_op = GradOperation(get_by_list=True, sens_param=True) | |||||
| return create_funcs(self.verification_set, gen_grad_net, run_block, grad_op) | return create_funcs(self.verification_set, gen_grad_net, run_block, grad_op) | ||||
| @@ -331,7 +331,7 @@ def create_funcs(verification_set, block_generator, block_runner, grad_op=None, | |||||
| # gradient | # gradient | ||||
| if grad_op: | if grad_op: | ||||
| if num_outputs == 0: | if num_outputs == 0: | ||||
| grad_op_ = GradOperation('grad', get_all=grad_op.get_all, | |||||
| grad_op_ = GradOperation(get_all=grad_op.get_all, | |||||
| get_by_list=grad_op.get_by_list, sens_param=False) | get_by_list=grad_op.get_by_list, sens_param=False) | ||||
| b = block_generator(block, grad_op_, len(inputs), desc_const=desc_const, | b = block_generator(block, grad_op_, len(inputs), desc_const=desc_const, | ||||
| const_first=const_first, add_fake_input=add_fake_input) | const_first=const_first, add_fake_input=add_fake_input) | ||||
| @@ -85,7 +85,7 @@ def bprop(func, *inputs, grads_wrt_outputs=None, wrt: list = None, params: list | |||||
| if not params: | if not params: | ||||
| params = func.trainable_params() | params = func.trainable_params() | ||||
| grad_op = GradOperation(name='grad', get_all=wrt_inputs, get_by_list=wrt_params, sens_param=with_sens_param) | |||||
| grad_op = GradOperation(get_all=wrt_inputs, get_by_list=wrt_params, sens_param=with_sens_param) | |||||
| grad = Bprop(func, wrt_params, params, grad_op, grads_wrt_outputs) | grad = Bprop(func, wrt_params, params, grad_op, grads_wrt_outputs) | ||||
| if context.get_context("mode") == context.PYNATIVE_MODE: | if context.get_context("mode") == context.PYNATIVE_MODE: | ||||
| @@ -315,7 +315,7 @@ class ScalarGradChecker(_GradChecker): | |||||
| output_selector=None, | output_selector=None, | ||||
| sampling_times=-1, | sampling_times=-1, | ||||
| reduce_output=False) -> None: | reduce_output=False) -> None: | ||||
| grad_op = GradOperation('grad', get_all=True, sens_param=True) | |||||
| grad_op = GradOperation(get_all=True, sens_param=True) | |||||
| super(ScalarGradChecker, self).__init__(fn, grad_op, args, delta, max_error, input_selector, \ | super(ScalarGradChecker, self).__init__(fn, grad_op, args, delta, max_error, input_selector, \ | ||||
| output_selector, sampling_times, reduce_output) | output_selector, sampling_times, reduce_output) | ||||
| @@ -358,7 +358,7 @@ class OperationGradChecker(_GradChecker): | |||||
| output_selector=None, | output_selector=None, | ||||
| sampling_times=-1, | sampling_times=-1, | ||||
| reduce_output=False) -> None: | reduce_output=False) -> None: | ||||
| grad_op = GradOperation('grad', get_all=True, sens_param=True) | |||||
| grad_op = GradOperation(get_all=True, sens_param=True) | |||||
| super(OperationGradChecker, self).__init__(fn, grad_op, args, delta, max_error, input_selector, \ | super(OperationGradChecker, self).__init__(fn, grad_op, args, delta, max_error, input_selector, \ | ||||
| output_selector, sampling_times, reduce_output) | output_selector, sampling_times, reduce_output) | ||||
| @@ -390,7 +390,7 @@ class NNGradChecker(_GradChecker): | |||||
| output_selector=None, | output_selector=None, | ||||
| sampling_times=-1, | sampling_times=-1, | ||||
| reduce_output=False) -> None: | reduce_output=False) -> None: | ||||
| grad_op = GradOperation('grad', get_by_list=True, sens_param=True) | |||||
| grad_op = GradOperation(get_by_list=True, sens_param=True) | |||||
| self.params = ParameterTuple(fn.trainable_params()) | self.params = ParameterTuple(fn.trainable_params()) | ||||
| super(NNGradChecker, self).__init__(fn, grad_op, args, delta, max_error, input_selector, \ | super(NNGradChecker, self).__init__(fn, grad_op, args, delta, max_error, input_selector, \ | ||||
| output_selector, sampling_times, reduce_output) | output_selector, sampling_times, reduce_output) | ||||
| @@ -23,7 +23,7 @@ from mindspore import Tensor | |||||
| from mindspore.common.api import _executor | from mindspore.common.api import _executor | ||||
| grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True) | |||||
| grad_all_with_sens = C.GradOperation(get_all=True, sens_param=True) | |||||
| class InputBackward(nn.Cell): | class InputBackward(nn.Cell): | ||||
| @@ -27,7 +27,7 @@ from mindspore.common.api import _executor | |||||
| context.set_context(mode=context.GRAPH_MODE) | context.set_context(mode=context.GRAPH_MODE) | ||||
| grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True) | |||||
| grad_all_with_sens = C.GradOperation(get_all=True, sens_param=True) | |||||
| batch_size = 1 | batch_size = 1 | ||||
| channel = 1 | channel = 1 | ||||
| @@ -28,8 +28,8 @@ from mindspore.ops import operations as P | |||||
| # context.set_context(save_graphs=True) | # context.set_context(save_graphs=True) | ||||
| grad_by_list = C.GradOperation('get_by_list', get_by_list=True) | |||||
| grad_all = C.GradOperation('get_all', get_all=True) | |||||
| grad_by_list = C.GradOperation(get_by_list=True) | |||||
| grad_all = C.GradOperation(get_all=True) | |||||
| def test_while_forward(): | def test_while_forward(): | ||||
| @@ -25,7 +25,7 @@ from mindspore.common.api import _executor | |||||
| context.set_context(mode=context.GRAPH_MODE) | context.set_context(mode=context.GRAPH_MODE) | ||||
| grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True) | |||||
| grad_all_with_sens = C.GradOperation(get_all=True, sens_param=True) | |||||
| class MeanAggregatorGrad(nn.Cell): | class MeanAggregatorGrad(nn.Cell): | ||||
| @@ -284,9 +284,9 @@ class TrainStepWrap(nn.Cell): | |||||
| self.optimizer_d = Adam( | self.optimizer_d = Adam( | ||||
| self.weights_d, learning_rate=3.5e-4, eps=1e-8, loss_scale=sens) | self.weights_d, learning_rate=3.5e-4, eps=1e-8, loss_scale=sens) | ||||
| self.hyper_map = C.HyperMap() | self.hyper_map = C.HyperMap() | ||||
| self.grad_w = C.GradOperation('grad_w', get_by_list=True, | |||||
| self.grad_w = C.GradOperation(get_by_list=True, | |||||
| sens_param=True) | sens_param=True) | ||||
| self.grad_d = C.GradOperation('grad_d', get_by_list=True, | |||||
| self.grad_d = C.GradOperation(get_by_list=True, | |||||
| sens_param=True) | sens_param=True) | ||||
| self.sens = sens | self.sens = sens | ||||
| self.loss_net_w = IthOutputCell(network, output_index=0) | self.loss_net_w = IthOutputCell(network, output_index=0) | ||||
| @@ -647,7 +647,7 @@ class TrainingWrapper(nn.Cell): | |||||
| self.network = network | self.network = network | ||||
| self.weights = ms.ParameterTuple(network.trainable_params()) | self.weights = ms.ParameterTuple(network.trainable_params()) | ||||
| self.optimizer = optimizer | self.optimizer = optimizer | ||||
| self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) | |||||
| self.grad = C.GradOperation(get_by_list=True, sens_param=True) | |||||
| self.sens = sens | self.sens = sens | ||||
| self.reducer_flag = False | self.reducer_flag = False | ||||
| self.grad_reducer = None | self.grad_reducer = None | ||||
| @@ -271,7 +271,7 @@ class BertTrainOneStepCell(nn.Cell): | |||||
| self.network = network | self.network = network | ||||
| self.weights = ParameterTuple(network.trainable_params()) | self.weights = ParameterTuple(network.trainable_params()) | ||||
| self.optimizer = optimizer | self.optimizer = optimizer | ||||
| self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) | |||||
| self.grad = C.GradOperation(get_by_list=True, sens_param=True) | |||||
| self.sens = sens | self.sens = sens | ||||
| self.reducer_flag = False | self.reducer_flag = False | ||||
| self.parallel_mode = context.get_auto_parallel_context("parallel_mode") | self.parallel_mode = context.get_auto_parallel_context("parallel_mode") | ||||
| @@ -351,8 +351,7 @@ class BertTrainOneStepWithLossScaleCell(nn.Cell): | |||||
| self.network = network | self.network = network | ||||
| self.weights = ParameterTuple(network.trainable_params()) | self.weights = ParameterTuple(network.trainable_params()) | ||||
| self.optimizer = optimizer | self.optimizer = optimizer | ||||
| self.grad = C.GradOperation('grad', | |||||
| get_by_list=True, | |||||
| self.grad = C.GradOperation(get_by_list=True, | |||||
| sens_param=True) | sens_param=True) | ||||
| self.reducer_flag = False | self.reducer_flag = False | ||||
| self.allreduce = P.AllReduce() | self.allreduce = P.AllReduce() | ||||
| @@ -52,8 +52,7 @@ class BertFinetuneCell(nn.Cell): | |||||
| self.network = network | self.network = network | ||||
| self.weights = ParameterTuple(network.trainable_params()) | self.weights = ParameterTuple(network.trainable_params()) | ||||
| self.optimizer = optimizer | self.optimizer = optimizer | ||||
| self.grad = C.GradOperation('grad', | |||||
| get_by_list=True, | |||||
| self.grad = C.GradOperation(get_by_list=True, | |||||
| sens_param=True) | sens_param=True) | ||||
| self.reducer_flag = False | self.reducer_flag = False | ||||
| self.allreduce = P.AllReduce() | self.allreduce = P.AllReduce() | ||||
| @@ -120,7 +120,7 @@ class DistributedGradReducerThor(Cell): | |||||
| >>> self.network.add_flags(defer_inline=True) | >>> self.network.add_flags(defer_inline=True) | ||||
| >>> self.weights = ParameterTuple(network.trainable_params()) | >>> self.weights = ParameterTuple(network.trainable_params()) | ||||
| >>> self.optimizer = optimizer | >>> self.optimizer = optimizer | ||||
| >>> self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) | |||||
| >>> self.grad = C.GradOperation(get_by_list=True, sens_param=True) | |||||
| >>> self.sens = sens | >>> self.sens = sens | ||||
| >>> self.reducer_flag = False | >>> self.reducer_flag = False | ||||
| >>> self.grad_reducer = None | >>> self.grad_reducer = None | ||||
| @@ -29,7 +29,7 @@ from mindspore.ops import operations as P | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | ||||
| grad_all = C.GradOperation('get_all', get_all=True) | |||||
| grad_all = C.GradOperation(get_all=True) | |||||
| class MulAdd(nn.Cell): | class MulAdd(nn.Cell): | ||||
| @@ -351,7 +351,7 @@ class MulAddWithParam(nn.Cell): | |||||
| @pytest.mark.platform_x86_ascend_training | @pytest.mark.platform_x86_ascend_training | ||||
| @pytest.mark.env_onecard | @pytest.mark.env_onecard | ||||
| def test_refkey_bprop(): | def test_refkey_bprop(): | ||||
| grad_by_list = C.GradOperation('get_by_list', get_all=True, get_by_list=True) | |||||
| grad_by_list = C.GradOperation(get_all=True, get_by_list=True) | |||||
| class GradWrap(nn.Cell): | class GradWrap(nn.Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(GradWrap, self).__init__() | super(GradWrap, self).__init__() | ||||
| @@ -49,7 +49,7 @@ def test_net(): | |||||
| def test_grad_addn_with_list(): | def test_grad_addn_with_list(): | ||||
| grad_op = C.GradOperation('get_all', get_all=True) | |||||
| grad_op = C.GradOperation(get_all=True) | |||||
| class AddN(nn.Cell): | class AddN(nn.Cell): | ||||
| def __init__(self): | def __init__(self): | ||||
| super().__init__() | super().__init__() | ||||
| @@ -29,7 +29,7 @@ context.set_context(device_target="Ascend") | |||||
| class Grad(nn.Cell): | class Grad(nn.Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| @ms_function | @ms_function | ||||
| @@ -26,7 +26,7 @@ context.set_context(device_target="Ascend") | |||||
| class Grad(nn.Cell): | class Grad(nn.Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| @ms_function | @ms_function | ||||
| @@ -30,7 +30,7 @@ context.set_context(device_target="Ascend") | |||||
| class Grad(nn.Cell): | class Grad(nn.Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| @ms_function | @ms_function | ||||
| @@ -27,7 +27,7 @@ context.set_context(device_target="Ascend") | |||||
| class Grad(nn.Cell): | class Grad(nn.Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| @ms_function | @ms_function | ||||
| @@ -27,7 +27,7 @@ context.set_context(device_target="Ascend") | |||||
| class Grad(nn.Cell): | class Grad(nn.Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| @ms_function | @ms_function | ||||
| @@ -27,7 +27,7 @@ context.set_context(device_target="Ascend") | |||||
| class Grad(nn.Cell): | class Grad(nn.Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| @ms_function | @ms_function | ||||
| @@ -27,7 +27,7 @@ context.set_context(device_target="Ascend") | |||||
| class Grad(nn.Cell): | class Grad(nn.Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| @ms_function | @ms_function | ||||
| @@ -30,7 +30,7 @@ context.set_context(device_target="Ascend") | |||||
| class Grad(nn.Cell): | class Grad(nn.Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| @ms_function | @ms_function | ||||
| @@ -27,7 +27,7 @@ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
| class Grad(Cell): | class Grad(Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| def construct(self, input_, output_grad): | def construct(self, input_, output_grad): | ||||
| @@ -71,7 +71,7 @@ class MEGeluLargeIn(Cell): | |||||
| class GradLargeIn(Cell): | class GradLargeIn(Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(GradLargeIn, self).__init__() | super(GradLargeIn, self).__init__() | ||||
| self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| def construct(self, x1, x2, output_grad): | def construct(self, x1, x2, output_grad): | ||||
| @@ -27,7 +27,7 @@ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
| class Grad(Cell): | class Grad(Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| def construct(self, input_, output_grad,): | def construct(self, input_, output_grad,): | ||||
| @@ -21,7 +21,7 @@ from mindspore.ops import composite as C | |||||
| from mindspore.ops import operations as P | from mindspore.ops import operations as P | ||||
| context.set_context(device_target="Ascend") | context.set_context(device_target="Ascend") | ||||
| grad = C.GradOperation('get_all', get_all=True, sens_param=True) | |||||
| grad = C.GradOperation(get_all=True, sens_param=True) | |||||
| class MaxNetMe(Cell): | class MaxNetMe(Cell): | ||||
| @@ -27,7 +27,7 @@ context.set_context(device_target="Ascend") | |||||
| class Grad(nn.Cell): | class Grad(nn.Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| @ms_function | @ms_function | ||||
| @@ -21,7 +21,7 @@ from mindspore.ops import composite as C | |||||
| from mindspore.ops.operations import Minimum | from mindspore.ops.operations import Minimum | ||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | ||||
| grad = C.GradOperation('get_all', get_all=True, sens_param=True) | |||||
| grad = C.GradOperation(get_all=True, sens_param=True) | |||||
| class MinNetMe(Cell): | class MinNetMe(Cell): | ||||
| @@ -27,7 +27,7 @@ context.set_context(device_target="Ascend") | |||||
| class Grad(nn.Cell): | class Grad(nn.Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| @ms_function | @ms_function | ||||
| @@ -27,7 +27,7 @@ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
| class Grad(nn.Cell): | class Grad(nn.Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = GradOperation(name="get_all", get_all=True) | |||||
| self.grad = GradOperation(get_all=True) | |||||
| self.network = network | self.network = network | ||||
| @ms_function | @ms_function | ||||
| @@ -37,7 +37,7 @@ class Net(nn.Cell): | |||||
| class Grad(nn.Cell): | class Grad(nn.Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| @ms_function | @ms_function | ||||
| @@ -37,7 +37,7 @@ class Net(nn.Cell): | |||||
| class Grad(nn.Cell): | class Grad(nn.Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| @ms_function | @ms_function | ||||
| @@ -37,7 +37,7 @@ class Net(nn.Cell): | |||||
| class Grad(nn.Cell): | class Grad(nn.Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| @ms_function | @ms_function | ||||
| @@ -36,7 +36,7 @@ class Net(nn.Cell): | |||||
| class Grad(nn.Cell): | class Grad(nn.Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| def construct(self, pred, gt, dout): | def construct(self, pred, gt, dout): | ||||
| @@ -26,7 +26,7 @@ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
| class Grad(Cell): | class Grad(Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| def construct(self, input_, output_grad): | def construct(self, input_, output_grad): | ||||
| @@ -37,7 +37,7 @@ class Batchnorm_Net(Cell): | |||||
| class Grad(Cell): | class Grad(Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = C.GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = C.GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| def construct(self, input_data, sens): | def construct(self, input_data, sens): | ||||
| @@ -207,8 +207,7 @@ class Grad(nn.Cell): | |||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.network = network | self.network = network | ||||
| self.weights = ParameterTuple(network.trainable_params()) | self.weights = ParameterTuple(network.trainable_params()) | ||||
| self.grad = C.GradOperation('grad', | |||||
| get_by_list=True, | |||||
| self.grad = C.GradOperation(get_by_list=True, | |||||
| sens_param=True) | sens_param=True) | ||||
| @ms_function | @ms_function | ||||
| @@ -23,7 +23,7 @@ from mindspore.ops import composite as C | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | ||||
| grad_with_sens = C.GradOperation('grad_with_sens', sens_param=True) | |||||
| grad_with_sens = C.GradOperation(sens_param=True) | |||||
| class Net(nn.Cell): | class Net(nn.Cell): | ||||
| @@ -37,7 +37,7 @@ class Batchnorm_Net(Cell): | |||||
| class Grad(Cell): | class Grad(Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = C.GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = C.GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| def construct(self, input_data, sens): | def construct(self, input_data, sens): | ||||
| @@ -54,7 +54,7 @@ def test_binary_cross_entropy_loss(): | |||||
| class Grad(nn.Cell): | class Grad(nn.Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = C.GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = C.GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| def construct(self, x1, x2, sens, weight): | def construct(self, x1, x2, sens, weight): | ||||
| @@ -40,7 +40,7 @@ class Net(nn.Cell): | |||||
| class GradData(nn.Cell): | class GradData(nn.Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(GradData, self).__init__() | super(GradData, self).__init__() | ||||
| self.grad = GradOperation(name="get_all", get_all=True, sens_param=False) | |||||
| self.grad = GradOperation(get_all=True, sens_param=False) | |||||
| self.network = network | self.network = network | ||||
| def construct(self, probs, labels, input_lengths, label_lengths): | def construct(self, probs, labels, input_lengths, label_lengths): | ||||
| @@ -65,7 +65,7 @@ def test_biasadd(): | |||||
| class GradData(nn.Cell): | class GradData(nn.Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(GradData, self).__init__() | super(GradData, self).__init__() | ||||
| self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| def construct(self, inputs, output_grad): | def construct(self, inputs, output_grad): | ||||
| @@ -77,8 +77,7 @@ class GradWeight(nn.Cell): | |||||
| super(GradWeight, self).__init__() | super(GradWeight, self).__init__() | ||||
| self.network = network | self.network = network | ||||
| self.weights = ParameterTuple(network.trainable_params()) | self.weights = ParameterTuple(network.trainable_params()) | ||||
| self.grad = C.GradOperation('grad', | |||||
| get_by_list=True, | |||||
| self.grad = C.GradOperation(get_by_list=True, | |||||
| sens_param=True) | sens_param=True) | ||||
| def construct(self, x, output_grad): | def construct(self, x, output_grad): | ||||
| @@ -169,7 +168,7 @@ def test_dw(): | |||||
| class Grad(nn.Cell): | class Grad(nn.Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| def construct(self, input_, bias, dy): | def construct(self, input_, bias, dy): | ||||
| @@ -37,7 +37,7 @@ class GeluNet(nn.Cell): | |||||
| class Grad(nn.Cell): | class Grad(nn.Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = C.GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = C.GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| def construct(self, input_data, sens): | def construct(self, input_data, sens): | ||||
| @@ -53,7 +53,7 @@ def test_binary_cross_entropy_loss(): | |||||
| class Grad(nn.Cell): | class Grad(nn.Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = C.GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = C.GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| def construct(self, x1, x2, sens): | def construct(self, x1, x2, sens): | ||||
| @@ -52,7 +52,7 @@ class LogSoftmax(nn.Cell): | |||||
| class Grad(nn.Cell): | class Grad(nn.Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = C.GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = C.GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| def construct(self, input_data, sens): | def construct(self, input_data, sens): | ||||
| @@ -581,8 +581,7 @@ class Grad(nn.Cell): | |||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.network = network | self.network = network | ||||
| self.weights = ParameterTuple(network.trainable_params()) | self.weights = ParameterTuple(network.trainable_params()) | ||||
| self.grad = C.GradOperation('grad', | |||||
| get_by_list=True, | |||||
| self.grad = C.GradOperation(get_by_list=True, | |||||
| sens_param=True) | sens_param=True) | ||||
| @ms_function | @ms_function | ||||
| @@ -35,7 +35,7 @@ class Net(Cell): | |||||
| class Grad(Cell): | class Grad(Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = C.GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = C.GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| def construct(self, x1, x2, sens): | def construct(self, x1, x2, sens): | ||||
| @@ -36,7 +36,7 @@ class MinimumNet(Cell): | |||||
| class Grad(Cell): | class Grad(Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = C.GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = C.GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| def construct(self, x1, x2, sens): | def construct(self, x1, x2, sens): | ||||
| @@ -58,7 +58,7 @@ def test_mirror_pad(): | |||||
| class Grad(nn.Cell): | class Grad(nn.Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| def construct(self, input_, output_grad): | def construct(self, input_, output_grad): | ||||
| return self.grad(self.network)(input_, output_grad) | return self.grad(self.network)(input_, output_grad) | ||||
| @@ -59,7 +59,7 @@ def test_smoothl1loss(): | |||||
| class Grad(nn.Cell): | class Grad(nn.Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = C.GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = C.GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| def construct(self, x1, x2, sens): | def construct(self, x1, x2, sens): | ||||
| @@ -79,7 +79,7 @@ class Net(nn.Cell): | |||||
| class Grad(nn.Cell): | class Grad(nn.Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = C.GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = C.GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| def construct(self, input_data, sens): | def construct(self, input_data, sens): | ||||
| @@ -36,7 +36,7 @@ class StridedSliceNet(nn.Cell): | |||||
| class GradData(nn.Cell): | class GradData(nn.Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(GradData, self).__init__() | super(GradData, self).__init__() | ||||
| self.grad = C.GradOperation(name="get_all", get_all=True, sens_param=False) | |||||
| self.grad = C.GradOperation(get_all=True, sens_param=False) | |||||
| self.network = network | self.network = network | ||||
| def construct(self, x): | def construct(self, x): | ||||
| @@ -37,7 +37,7 @@ class TanhNet(nn.Cell): | |||||
| class Grad(nn.Cell): | class Grad(nn.Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = C.GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = C.GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| def construct(self, input_data, sens): | def construct(self, input_data, sens): | ||||
| @@ -30,7 +30,7 @@ from mindspore.common.initializer import TruncatedNormal | |||||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") | context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") | ||||
| grad_all = C.GradOperation('get_all', get_all=True) | |||||
| grad_all = C.GradOperation(get_all=True) | |||||
| def weight_variable(): | def weight_variable(): | ||||
| @@ -112,7 +112,7 @@ class GradWrap(nn.Cell): | |||||
| def construct(self, x, label): | def construct(self, x, label): | ||||
| weights = self.weights | weights = self.weights | ||||
| return C.GradOperation('get_by_list', get_by_list=True)(self.network, weights)(x, label) | |||||
| return C.GradOperation(get_by_list=True)(self.network, weights)(x, label) | |||||
| class test_custom_cell_base(): | class test_custom_cell_base(): | ||||
| @@ -29,7 +29,7 @@ from mindspore.ops import operations as P | |||||
| np.random.seed(1) | np.random.seed(1) | ||||
| grad_by_list = C.GradOperation('get_by_list', get_by_list=True) | |||||
| grad_by_list = C.GradOperation(get_by_list=True) | |||||
| def weight_variable(): | def weight_variable(): | ||||
| @@ -87,7 +87,7 @@ class LeNet(nn.Cell): | |||||
| class GradWithSens(Cell): | class GradWithSens(Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(GradWithSens, self).__init__() | super(GradWithSens, self).__init__() | ||||
| self.grad = GradOperation(name="grad", get_all=False, | |||||
| self.grad = GradOperation(get_all=False, | |||||
| sens_param=True) | sens_param=True) | ||||
| self.network = network | self.network = network | ||||
| @@ -99,8 +99,7 @@ class GradWithSens(Cell): | |||||
| class GradWrapWithLoss(Cell): | class GradWrapWithLoss(Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(GradWrapWithLoss, self).__init__() | super(GradWrapWithLoss, self).__init__() | ||||
| self._grad_all = GradOperation(name="get_all", | |||||
| get_all=True, | |||||
| self._grad_all = GradOperation(get_all=True, | |||||
| sens_param=False) | sens_param=False) | ||||
| self._network = network | self._network = network | ||||
| @@ -40,7 +40,7 @@ np.random.seed(1) | |||||
| ds.config.set_seed(1) | ds.config.set_seed(1) | ||||
| grad_by_list = CP.GradOperation('get_by_list', get_by_list=True) | |||||
| grad_by_list = CP.GradOperation(get_by_list=True) | |||||
| def weight_variable(shape): | def weight_variable(shape): | ||||
| @@ -24,7 +24,7 @@ from mindspore.common.parameter import ParameterTuple | |||||
| from mindspore.ops import composite as C | from mindspore.ops import composite as C | ||||
| grad_by_list_with_sens = C.GradOperation('grad_by_list_with_sens', get_by_list=True, sens_param=True) | |||||
| grad_by_list_with_sens = C.GradOperation(get_by_list=True, sens_param=True) | |||||
| def setup_module(): | def setup_module(): | ||||
| @@ -32,7 +32,7 @@ class TrainStepWrap(nn.Cell): | |||||
| self.weights = ParameterTuple(network.trainable_params()) | self.weights = ParameterTuple(network.trainable_params()) | ||||
| self.optimizer = nn.Momentum(self.weights, 0.1, 0.9) | self.optimizer = nn.Momentum(self.weights, 0.1, 0.9) | ||||
| self.hyper_map = C.HyperMap() | self.hyper_map = C.HyperMap() | ||||
| self.grad = C.GradOperation('grad', get_by_list=True) | |||||
| self.grad = C.GradOperation(get_by_list=True) | |||||
| def construct(self, x, label): | def construct(self, x, label): | ||||
| weights = self.weights | weights = self.weights | ||||
| @@ -71,7 +71,7 @@ class TrainStepWrap2(nn.Cell): | |||||
| self.weights = ParameterTuple(network.get_parameters()) | self.weights = ParameterTuple(network.get_parameters()) | ||||
| self.optimizer = nn.Momentum(self.weights, 0.1, 0.9) | self.optimizer = nn.Momentum(self.weights, 0.1, 0.9) | ||||
| self.hyper_map = C.HyperMap() | self.hyper_map = C.HyperMap() | ||||
| self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) | |||||
| self.grad = C.GradOperation(get_by_list=True, sens_param=True) | |||||
| self.sens = sens | self.sens = sens | ||||
| def construct(self, x): | def construct(self, x): | ||||
| @@ -93,7 +93,7 @@ class TrainStepWrapWithoutOpt(nn.Cell): | |||||
| super(TrainStepWrapWithoutOpt, self).__init__() | super(TrainStepWrapWithoutOpt, self).__init__() | ||||
| self.network = network | self.network = network | ||||
| self.weights = ParameterTuple(network.trainable_params()) | self.weights = ParameterTuple(network.trainable_params()) | ||||
| self.grad = C.GradOperation('grad', get_by_list=True) | |||||
| self.grad = C.GradOperation(get_by_list=True) | |||||
| def construct(self, x, label): | def construct(self, x, label): | ||||
| grads = self.grad(self.network, self.weights)(x, label) | grads = self.grad(self.network, self.weights)(x, label) | ||||
| @@ -31,7 +31,7 @@ from tests.mindspore_test_framework.pipeline.forward.compile_forward \ | |||||
| context.set_context(mode=context.GRAPH_MODE) | context.set_context(mode=context.GRAPH_MODE) | ||||
| grad_all = C.GradOperation('get_all', get_all=True) | |||||
| grad_all = C.GradOperation(get_all=True) | |||||
| def test_list_equal(): | def test_list_equal(): | ||||
| @@ -52,8 +52,7 @@ class TrainOneStepWithLarsCell(nn.Cell): | |||||
| self.slice_index, self.params_len, weights = get_net_trainable_reordered_params(self.network) | self.slice_index, self.params_len, weights = get_net_trainable_reordered_params(self.network) | ||||
| self.weights = ParameterTuple(weights) | self.weights = ParameterTuple(weights) | ||||
| self.optimizer = optimizer | self.optimizer = optimizer | ||||
| self.grad = C.GradOperation('grad', | |||||
| get_by_list=True, | |||||
| self.grad = C.GradOperation(get_by_list=True, | |||||
| sens_param=True) | sens_param=True) | ||||
| self.sens = Parameter(Tensor([sens], mstype.float32), name='sens', requires_grad=False) | self.sens = Parameter(Tensor([sens], mstype.float32), name='sens', requires_grad=False) | ||||
| self.weight_decay = 1.0 | self.weight_decay = 1.0 | ||||
| @@ -248,7 +248,7 @@ def test_row_tensor_attr(): | |||||
| def test_row_tensor_sparse_gatherv2_grad_all(): | def test_row_tensor_sparse_gatherv2_grad_all(): | ||||
| grad_all = C.GradOperation('get_all', get_all=True) | |||||
| grad_all = C.GradOperation(get_all=True) | |||||
| class GradWrap(nn.Cell): | class GradWrap(nn.Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(GradWrap, self).__init__() | super(GradWrap, self).__init__() | ||||
| @@ -269,7 +269,7 @@ def test_row_tensor_sparse_gatherv2_grad_all(): | |||||
| def test_row_tensor_sparse_gatherv2_grad_with_pram(): | def test_row_tensor_sparse_gatherv2_grad_with_pram(): | ||||
| grad_by_list = C.GradOperation('get_by_list', get_by_list=True) | |||||
| grad_by_list = C.GradOperation(get_by_list=True) | |||||
| class GradWrap(nn.Cell): | class GradWrap(nn.Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(GradWrap, self).__init__() | super(GradWrap, self).__init__() | ||||
| @@ -28,7 +28,7 @@ from mindspore import Tensor, SparseTensor, context | |||||
| context.set_context(mode=context.GRAPH_MODE, enable_sparse=True) | context.set_context(mode=context.GRAPH_MODE, enable_sparse=True) | ||||
| grad_op = C.GradOperation('get_all', get_all=True) | |||||
| grad_op = C.GradOperation(get_all=True) | |||||
| class MakeSparseTensor(nn.Cell): | class MakeSparseTensor(nn.Cell): | ||||
| def __init__(self, dense_shape): | def __init__(self, dense_shape): | ||||
| @@ -50,7 +50,7 @@ class Func(nn.Cell): | |||||
| return out | return out | ||||
| grad_s = C.GradOperation('grad_with_sens', get_all=True, sens_param=True) | |||||
| grad_s = C.GradOperation(get_all=True, sens_param=True) | |||||
| class Net(nn.Cell): | class Net(nn.Cell): | ||||
| @@ -166,8 +166,7 @@ class GetParamGrad(nn.Cell): | |||||
| super(GetParamGrad, self).__init__(auto_prefix=False) | super(GetParamGrad, self).__init__(auto_prefix=False) | ||||
| self.network = network | self.network = network | ||||
| self.weights = ParameterTuple(network.trainable_params()) | self.weights = ParameterTuple(network.trainable_params()) | ||||
| self.grad = C.GradOperation('grad', | |||||
| get_by_list=True, | |||||
| self.grad = C.GradOperation(get_by_list=True, | |||||
| sens_param=True) | sens_param=True) | ||||
| def construct(self, data, sens): | def construct(self, data, sens): | ||||
| @@ -22,7 +22,7 @@ from mindspore.ops.operations import BiasAdd, MatMul | |||||
| import mindspore.ops.composite as C | import mindspore.ops.composite as C | ||||
| grad_by_list = C.GradOperation('get_by_list', get_by_list=True) | |||||
| grad_by_list = C.GradOperation(get_by_list=True) | |||||
| class Net(Cell): | class Net(Cell): | ||||
| @@ -34,7 +34,7 @@ class Net(nn.Cell): | |||||
| class Grad(nn.Cell): | class Grad(nn.Cell): | ||||
| def __init__(self, network): | def __init__(self, network): | ||||
| super(Grad, self).__init__() | super(Grad, self).__init__() | ||||
| self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.grad = GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | self.network = network | ||||
| @ms_function | @ms_function | ||||
| @@ -28,7 +28,7 @@ from ....mindspore_test_framework.pipeline.forward.compile_forward \ | |||||
| import pipeline_for_compile_forward_ge_graph_for_case_by_case_config | import pipeline_for_compile_forward_ge_graph_for_case_by_case_config | ||||
| grad_by_list_with_sens = C.GradOperation('grad_by_list_with_sens', get_by_list=True, sens_param=True) | |||||
| grad_by_list_with_sens = C.GradOperation(get_by_list=True, sens_param=True) | |||||
| class DisOrderTest1(nn.Cell): | class DisOrderTest1(nn.Cell): | ||||
| @@ -30,9 +30,9 @@ from mindspore.common import ms_function | |||||
| context.set_context(mode=context.GRAPH_MODE) | context.set_context(mode=context.GRAPH_MODE) | ||||
| grad_by_list = C.GradOperation('get_by_list', get_by_list=True) | |||||
| grad_all = C.GradOperation('get_all', get_all=True) | |||||
| grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True) | |||||
| grad_by_list = C.GradOperation(get_by_list=True) | |||||
| grad_all = C.GradOperation(get_all=True) | |||||
| grad_all_with_sens = C.GradOperation(get_all=True, sens_param=True) | |||||
| def cond_data_test(x_init, y_init): | def cond_data_test(x_init, y_init): | ||||
| @@ -564,7 +564,7 @@ def test_switch_layer_env_eliminate(): | |||||
| class NetGrad(nn.Cell): | class NetGrad(nn.Cell): | ||||
| def __init__(self, net): | def __init__(self, net): | ||||
| super(NetGrad, self).__init__() | super(NetGrad, self).__init__() | ||||
| self.grad_op = C.GradOperation('grad', get_by_list=True, sens_param=False) | |||||
| self.grad_op = C.GradOperation(get_by_list=True, sens_param=False) | |||||
| self.net = net | self.net = net | ||||
| self.weights = ParameterTuple(self.net.trainable_params()) | self.weights = ParameterTuple(self.net.trainable_params()) | ||||
| @@ -593,7 +593,7 @@ def test_switch_layer_single_layer(): | |||||
| class NetGrad(nn.Cell): | class NetGrad(nn.Cell): | ||||
| def __init__(self, net): | def __init__(self, net): | ||||
| super(NetGrad, self).__init__() | super(NetGrad, self).__init__() | ||||
| self.grad_op = C.GradOperation('grad', get_by_list=True, sens_param=False) | |||||
| self.grad_op = C.GradOperation(get_by_list=True, sens_param=False) | |||||
| self.net = net | self.net = net | ||||
| self.weights = ParameterTuple(self.net.trainable_params()) | self.weights = ParameterTuple(self.net.trainable_params()) | ||||
| @@ -38,7 +38,7 @@ context.set_context(mode=context.GRAPH_MODE) | |||||
| # W0613: unused-argument | # W0613: unused-argument | ||||
| # W0231: super-init-not-called | # W0231: super-init-not-called | ||||
| grad = C.GradOperation('grad') | |||||
| grad = C.GradOperation() | |||||
| def test_multiply(): | def test_multiply(): | ||||
| """ test_multiply """ | """ test_multiply """ | ||||