|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- This test is used to monitor some features of MindArmour.
- """
- import numpy as np
- import pytest
-
- import mindspore.nn as nn
- from mindspore import context, Tensor
- from mindspore.nn import Cell, WithLossCell, TrainOneStepCell
- from mindspore.nn.optim.momentum import Momentum
- from mindspore.common.initializer import TruncatedNormal
- from mindspore.ops.composite import GradOperation
-
-
- def weight_variable():
- """weight initial"""
- return TruncatedNormal(0.02)
-
-
- def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
- """weight initial for conv layer"""
- weight = weight_variable()
- return nn.Conv2d(in_channels, out_channels,
- kernel_size=kernel_size, stride=stride, padding=padding,
- weight_init=weight, has_bias=False, pad_mode="valid")
-
-
- def fc_with_initialize(input_channels, out_channels):
- """weight initial for fc layer"""
- weight = weight_variable()
- bias = weight_variable()
- return nn.Dense(input_channels, out_channels, weight, bias)
-
-
- class LeNet(nn.Cell):
- """
- Lenet network
- Args:
- num_class (int): Num classes, Default: 10.
- Returns:
- Tensor, output tensor
- Examples:
- >>> LeNet(num_class=10)
- """
-
- def __init__(self, num_class=10):
- super(LeNet, self).__init__()
- self.conv1 = conv(1, 6, 5)
- self.conv2 = conv(6, 16, 5)
- self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
- self.fc2 = fc_with_initialize(120, 84)
- self.fc3 = fc_with_initialize(84, 10)
- self.relu = nn.ReLU()
- self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
- self.flatten = nn.Flatten()
-
- def construct(self, x):
- x = self.conv1(x)
- x = self.relu(x)
- x = self.max_pool2d(x)
- x = self.conv2(x)
- x = self.relu(x)
- x = self.max_pool2d(x)
- x = self.flatten(x)
- x = self.fc1(x)
- x = self.relu(x)
- x = self.fc2(x)
- x = self.relu(x)
- x = self.fc3(x)
- return x
-
-
- class GradWithSens(Cell):
- def __init__(self, network):
- super(GradWithSens, self).__init__()
- self.grad = GradOperation(get_all=False,
- sens_param=True)
- self.network = network
-
- def construct(self, inputs, weight):
- gout = self.grad(self.network)(inputs, weight)
- return gout
-
-
- class GradWrapWithLoss(Cell):
- def __init__(self, network):
- super(GradWrapWithLoss, self).__init__()
- self._grad_all = GradOperation(get_all=True,
- sens_param=False)
- self._network = network
-
- def construct(self, inputs, labels):
- gout = self._grad_all(self._network)(inputs, labels)
- return gout[0]
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_grad_values_and_infer_shape():
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- inputs_np = np.random.rand(32, 1, 32, 32).astype(np.float32)
- sens = np.ones((inputs_np.shape[0], 10)).astype(np.float32)
- inputs_np_2 = np.random.rand(64, 1, 32, 32).astype(np.float32)
-
- net = LeNet()
- grad_all = GradWithSens(net)
-
- grad_out = grad_all(Tensor(inputs_np), Tensor(sens)).asnumpy()
- out_shape = net(Tensor(inputs_np_2)).asnumpy().shape
- assert np.any(grad_out != 0), 'grad result can not be all zeros'
- assert out_shape == (64, 10), 'output shape should be (64, 10)'
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_multi_grads():
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- sparse = False
- inputs_np = np.random.rand(32, 1, 32, 32).astype(np.float32)
- labels_np = np.random.randint(10, size=32).astype(np.int32)
- inputs_np_2 = np.random.rand(64, 1, 32, 32).astype(np.float32)
- labels_np_2 = np.random.randint(10, size=64).astype(np.int32)
- if not sparse:
- labels_np = np.eye(10)[labels_np].astype(np.float32)
- labels_np_2 = np.eye(10)[labels_np_2].astype(np.float32)
-
- net = LeNet()
-
- # grad operation
- loss_fn = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=sparse)
- with_loss_cell = WithLossCell(net, loss_fn)
- grad_all = GradWrapWithLoss(with_loss_cell)
- grad_out = grad_all(Tensor(inputs_np), Tensor(labels_np)).asnumpy()
- assert np.any(grad_out != 0), 'grad result can not be all zeros'
-
- # train-one-step operation
- loss_fn = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=sparse)
- optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()),
- 0.01, 0.9)
- loss_net = WithLossCell(net, loss_fn)
- train_net = TrainOneStepCell(loss_net, optimizer)
- train_net.set_train()
- train_net(Tensor(inputs_np_2), Tensor(labels_np_2))
|