|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common.api import ms_function
- from mindspore.common.initializer import initializer
- from mindspore.common.parameter import Parameter
- from mindspore.ops import operations as P
- from mindspore.ops.composite import GradOperation
-
- context.set_context(device_target="Ascend")
-
-
- class Grad(nn.Cell):
- def __init__(self, network):
- super(Grad, self).__init__()
- self.grad = GradOperation(get_all=True, sens_param=True)
- self.network = network
-
- @ms_function
- def construct(self, input_, output_grad):
- return self.grad(self.network)(input_, output_grad)
-
-
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- out_channel = 512
- kernel_size = 2048
- self.conv = P.Conv2D(out_channel,
- (kernel_size, kernel_size),
- mode=1,
- pad_mode="same",
- pad=3,
- stride=2,
- dilation=1,
- group=1)
- self.w = Parameter(initializer(
- 'normal', [512, 2048, 1, 1]), name='w')
-
- @ms_function
- def construct(self, x):
- return self.conv(x, self.w)
-
-
- def test_net():
- x = np.ones([32, 2048, 7, 7]).astype(np.float32)
- sens = np.ones([32, 512, 7, 7]).astype(np.float32)
- net = Grad(Net())
- output = net(Tensor(x), Tensor(sens))
- print(output.asnumpy())
|