|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
-
- import mindspore.context as context
- import mindspore.nn as nn
- import mindspore.ops.composite as C
- from mindspore import Tensor
- from mindspore.ops import operations as P
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
-
-
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.add = P.AddN()
-
- def construct(self, x, y):
- return self.add((x, y))
-
-
- def test_net():
- x = np.random.randn(1, 3, 3, 4).astype(np.float32)
- y = np.random.randn(1, 3, 3, 4).astype(np.float32)
- add = Net()
- output = add(Tensor(x), Tensor(y))
- print(x)
- print(y)
- print(output.asnumpy())
- x = 1.0
- y = 2.0
- expect = 3.0
- add = Net()
- output = add(x, y)
- assert output == expect
-
-
- def test_grad_addn_with_list():
- grad_op = C.GradOperation(get_all=True)
- class AddN(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add_n = P.AddN()
-
- def construct(self, a, b):
- return self.add_n([a, b])
-
- inp = Tensor(np.ones([128, 96]).astype(np.float32))
- grad_op(AddN())(inp, inp)
|