|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import time
- import random
- import numpy as np
- import pytest
-
- import mindspore.common.dtype as mstype
- import mindspore.dataset as ds
- import mindspore.dataset.transforms.c_transforms as C
- import mindspore.dataset.transforms.vision.c_transforms as vision
- import mindspore.nn as nn
- import mindspore.ops.functional as F
-
- from mindspore import Tensor
- from mindspore import context
- from mindspore import ParameterTuple
- from mindspore.nn import Cell
- from mindspore.ops import operations as P
- from mindspore.ops import composite as CP
- from mindspore.nn.optim.momentum import Momentum
- from mindspore.common.initializer import initializer
- from mindspore.nn.wrap.cell_wrapper import WithLossCell
-
- random.seed(1)
- np.random.seed(1)
- ds.config.set_seed(1)
-
-
- grad_by_list = CP.GradOperation(get_by_list=True)
-
-
- def weight_variable(shape):
- return initializer('XavierUniform', shape=shape, dtype=mstype.float32)
-
-
- def weight_variable_uniform(shape):
- return initializer('Uniform', shape=shape, dtype=mstype.float32)
-
-
- def weight_variable_0(shape):
- zeros = np.zeros(shape).astype(np.float32)
- return Tensor(zeros)
-
-
- def weight_variable_1(shape):
- ones = np.ones(shape).astype(np.float32)
- return Tensor(ones)
-
-
- def conv3x3(in_channels, out_channels, stride=1, padding=0):
- """3x3 convolution """
- weight_shape = (out_channels, in_channels, 3, 3)
- weight = weight_variable(weight_shape)
- return nn.Conv2d(in_channels, out_channels,
- kernel_size=3, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="same")
-
-
- def conv1x1(in_channels, out_channels, stride=1, padding=0):
- """1x1 convolution"""
- weight_shape = (out_channels, in_channels, 1, 1)
- weight = weight_variable(weight_shape)
- return nn.Conv2d(in_channels, out_channels,
- kernel_size=1, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="same")
-
-
- def conv7x7(in_channels, out_channels, stride=1, padding=0):
- """1x1 convolution"""
- weight_shape = (out_channels, in_channels, 7, 7)
- weight = weight_variable(weight_shape)
- return nn.Conv2d(in_channels, out_channels,
- kernel_size=7, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="same")
-
-
- def bn_with_initialize(out_channels):
- shape = (out_channels)
- mean = weight_variable_0(shape)
- var = weight_variable_1(shape)
- beta = weight_variable_0(shape)
- gamma = weight_variable_uniform(shape)
- bn = nn.BatchNorm2d(out_channels, momentum=0.99, eps=0.00001, gamma_init=gamma,
- beta_init=beta, moving_mean_init=mean, moving_var_init=var)
- return bn
-
-
- def bn_with_initialize_last(out_channels):
- shape = (out_channels)
- mean = weight_variable_0(shape)
- var = weight_variable_1(shape)
- beta = weight_variable_0(shape)
- gamma = weight_variable_uniform(shape)
- bn = nn.BatchNorm2d(out_channels, momentum=0.99, eps=0.00001, gamma_init=gamma,
- beta_init=beta, moving_mean_init=mean, moving_var_init=var)
- return bn
-
-
- def fc_with_initialize(input_channels, out_channels):
- weight_shape = (out_channels, input_channels)
- weight = weight_variable(weight_shape)
- bias_shape = (out_channels)
- bias = weight_variable_uniform(bias_shape)
- return nn.Dense(input_channels, out_channels, weight, bias)
-
-
- class ResidualBlock(nn.Cell):
- expansion = 4
-
- def __init__(self,
- in_channels,
- out_channels,
- stride=1):
- super(ResidualBlock, self).__init__()
-
- out_chls = out_channels // self.expansion
- self.conv1 = conv1x1(in_channels, out_chls, stride=stride, padding=0)
- self.bn1 = bn_with_initialize(out_chls)
-
- self.conv2 = conv3x3(out_chls, out_chls, stride=1, padding=0)
- self.bn2 = bn_with_initialize(out_chls)
-
- self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0)
- self.bn3 = bn_with_initialize_last(out_channels)
-
- self.relu = P.ReLU()
- self.add = P.TensorAdd()
-
- def construct(self, x):
- identity = x
-
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
-
- out = self.conv2(out)
- out = self.bn2(out)
- out = self.relu(out)
-
- out = self.conv3(out)
- out = self.bn3(out)
-
- out = self.add(out, identity)
- out = self.relu(out)
-
- return out
-
-
- class ResidualBlockWithDown(nn.Cell):
- expansion = 4
-
- def __init__(self,
- in_channels,
- out_channels,
- stride=1,
- down_sample=False):
- super(ResidualBlockWithDown, self).__init__()
-
- out_chls = out_channels // self.expansion
- self.conv1 = conv1x1(in_channels, out_chls, stride=stride, padding=0)
- self.bn1 = bn_with_initialize(out_chls)
-
- self.conv2 = conv3x3(out_chls, out_chls, stride=1, padding=0)
- self.bn2 = bn_with_initialize(out_chls)
-
- self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0)
- self.bn3 = bn_with_initialize_last(out_channels)
-
- self.relu = P.ReLU()
- self.downSample = down_sample
-
- self.conv_down_sample = conv1x1(in_channels, out_channels, stride=stride, padding=0)
- self.bn_down_sample = bn_with_initialize(out_channels)
- self.add = P.TensorAdd()
-
- def construct(self, x):
- identity = x
-
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
-
- out = self.conv2(out)
- out = self.bn2(out)
- out = self.relu(out)
-
- out = self.conv3(out)
- out = self.bn3(out)
-
- identity = self.conv_down_sample(identity)
- identity = self.bn_down_sample(identity)
-
- out = self.add(out, identity)
- out = self.relu(out)
-
- return out
-
-
- class MakeLayer0(nn.Cell):
-
- def __init__(self, block, in_channels, out_channels, stride):
- super(MakeLayer0, self).__init__()
- self.a = ResidualBlockWithDown(in_channels, out_channels, stride=1, down_sample=True)
- self.b = block(out_channels, out_channels, stride=stride)
- self.c = block(out_channels, out_channels, stride=1)
-
- def construct(self, x):
- x = self.a(x)
- x = self.b(x)
- x = self.c(x)
-
- return x
-
-
- class MakeLayer1(nn.Cell):
-
- def __init__(self, block, in_channels, out_channels, stride):
- super(MakeLayer1, self).__init__()
- self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True)
- self.b = block(out_channels, out_channels, stride=1)
- self.c = block(out_channels, out_channels, stride=1)
- self.d = block(out_channels, out_channels, stride=1)
-
- def construct(self, x):
- x = self.a(x)
- x = self.b(x)
- x = self.c(x)
- x = self.d(x)
-
- return x
-
-
- class MakeLayer2(nn.Cell):
-
- def __init__(self, block, in_channels, out_channels, stride):
- super(MakeLayer2, self).__init__()
- self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True)
- self.b = block(out_channels, out_channels, stride=1)
- self.c = block(out_channels, out_channels, stride=1)
- self.d = block(out_channels, out_channels, stride=1)
- self.e = block(out_channels, out_channels, stride=1)
- self.f = block(out_channels, out_channels, stride=1)
-
- def construct(self, x):
- x = self.a(x)
- x = self.b(x)
- x = self.c(x)
- x = self.d(x)
- x = self.e(x)
- x = self.f(x)
-
- return x
-
-
- class MakeLayer3(nn.Cell):
-
- def __init__(self, block, in_channels, out_channels, stride):
- super(MakeLayer3, self).__init__()
- self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True)
- self.b = block(out_channels, out_channels, stride=1)
- self.c = block(out_channels, out_channels, stride=1)
-
- def construct(self, x):
- x = self.a(x)
- x = self.b(x)
- x = self.c(x)
-
- return x
-
-
- class ResNet(nn.Cell):
-
- def __init__(self, block, num_classes=100, batch_size=32):
- super(ResNet, self).__init__()
- self.batch_size = batch_size
- self.num_classes = num_classes
-
- self.conv1 = conv7x7(3, 64, stride=2, padding=0)
-
- self.bn1 = bn_with_initialize(64)
- self.relu = P.ReLU()
- self.maxpool = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="SAME")
-
- self.layer1 = MakeLayer0(block, in_channels=64, out_channels=256, stride=1)
- self.layer2 = MakeLayer1(block, in_channels=256, out_channels=512, stride=2)
- self.layer3 = MakeLayer2(block, in_channels=512, out_channels=1024, stride=2)
- self.layer4 = MakeLayer3(block, in_channels=1024, out_channels=2048, stride=2)
-
- self.pool = P.ReduceMean(keep_dims=True)
- self.squeeze = P.Squeeze(axis=(2, 3))
- self.fc = fc_with_initialize(512 * block.expansion, num_classes)
-
- def construct(self, x):
- x = self.conv1(x)
- x = self.bn1(x)
- x = self.relu(x)
- x = self.maxpool(x)[0]
-
- x = self.layer1(x)
- x = self.layer2(x)
- x = self.layer3(x)
- x = self.layer4(x)
-
- x = self.pool(x, (2, 3))
- x = self.squeeze(x)
- x = self.fc(x)
- return x
-
-
- def resnet50(batch_size, num_classes):
- return ResNet(ResidualBlock, num_classes, batch_size)
-
-
- def create_dataset(repeat_num=1, training=True, batch_size=32):
- data_home = "/home/workspace/mindspore_dataset"
- data_dir = data_home + "/cifar-10-batches-bin"
- if not training:
- data_dir = data_home + "/cifar-10-verify-bin"
- data_set = ds.Cifar10Dataset(data_dir)
-
- resize_height = 224
- resize_width = 224
- rescale = 1.0 / 255.0
- shift = 0.0
-
- # define map operations
- random_crop_op = vision.RandomCrop((32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT
- random_horizontal_op = vision.RandomHorizontalFlip()
- # interpolation default BILINEAR
- resize_op = vision.Resize((resize_height, resize_width))
- rescale_op = vision.Rescale(rescale, shift)
- normalize_op = vision.Normalize((0.4465, 0.4822, 0.4914), (0.2010, 0.1994, 0.2023))
- changeswap_op = vision.HWC2CHW()
- type_cast_op = C.TypeCast(mstype.int32)
-
- c_trans = []
- if training:
- c_trans = [random_crop_op, random_horizontal_op]
- c_trans += [resize_op, rescale_op, normalize_op,
- changeswap_op]
-
- # apply map operations on images
- data_set = data_set.map(input_columns="label", operations=type_cast_op)
- data_set = data_set.map(input_columns="image", operations=c_trans)
-
- # apply shuffle operations
- data_set = data_set.shuffle(buffer_size=1000)
-
- # apply batch operations
- data_set = data_set.batch(batch_size=batch_size, drop_remainder=True)
-
- # apply repeat operations
- data_set = data_set.repeat(repeat_num)
-
- return data_set
-
-
- class CrossEntropyLoss(nn.Cell):
- def __init__(self):
- super(CrossEntropyLoss, self).__init__()
- self.cross_entropy = P.SoftmaxCrossEntropyWithLogits()
- self.mean = P.ReduceMean()
- self.one_hot = P.OneHot()
- self.one = Tensor(1.0, mstype.float32)
- self.zero = Tensor(0.0, mstype.float32)
-
- def construct(self, logits, label):
- label = self.one_hot(label, F.shape(logits)[1], self.one, self.zero)
- loss = self.cross_entropy(logits, label)[0]
- loss = self.mean(loss, (-1,))
- return loss
-
-
- class GradWrap(Cell):
- """ GradWrap definition """
-
- def __init__(self, network):
- super(GradWrap, self).__init__()
- self.network = network
- self.weights = ParameterTuple(network.trainable_params())
-
- def construct(self, x, label):
- weights = self.weights
- return grad_by_list(self.network, weights)(x, label)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_pynative_resnet50():
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
-
- batch_size = 32
- num_classes = 10
- net = resnet50(batch_size, num_classes)
- criterion = CrossEntropyLoss()
- optimizer = Momentum(learning_rate=0.01, momentum=0.9,
- params=filter(lambda x: x.requires_grad, net.get_parameters()))
-
- net_with_criterion = WithLossCell(net, criterion)
- net_with_criterion.set_grad()
- train_network = GradWrap(net_with_criterion)
- train_network.set_train()
-
- step = 0
- max_step = 20
- exceed_num = 0
- data_set = create_dataset(repeat_num=1, training=True, batch_size=batch_size)
- for element in data_set.create_dict_iterator():
- step = step + 1
- if step > max_step:
- break
- start_time = time.time()
- input_data = Tensor(element["image"])
- input_label = Tensor(element["label"])
- loss_output = net_with_criterion(input_data, input_label)
- grads = train_network(input_data, input_label)
- optimizer(grads)
- end_time = time.time()
- cost_time = end_time - start_time
- print("======step: ", step, " loss: ", loss_output.asnumpy(), " cost time: ", cost_time)
- if step > 1 and cost_time > 0.23:
- exceed_num = exceed_num + 1
- assert exceed_num < 10
-
|