|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test_cell_bprop """
- import numpy as np
- import pytest
-
- import mindspore as ms
- import mindspore.common.dtype as mstype
- import mindspore.nn as nn
- from mindspore import Parameter, ParameterTuple
- from mindspore import context
- from mindspore.common.initializer import initializer
- from mindspore.common.tensor import Tensor
- from mindspore.ops import composite as C
- from mindspore.ops import operations as P
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
-
-
- grad_all = C.GradOperation(get_all=True)
-
-
- class MulAdd(nn.Cell):
- def construct(self, x, y):
- return 2 * x + y
-
- def bprop(self, x, y, out, dout):
- # In this test case, The user defined bprop is wrong defined purposely to distinguish from ad result
- return 2 * dout, 2 * y
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_grad_mul_add():
- mul_add = MulAdd()
- x = Tensor(1, dtype=ms.int32)
- y = Tensor(2, dtype=ms.int32)
- assert grad_all(mul_add)(x, y) == (2, 4)
-
-
- class InlineMulADD(nn.Cell):
- def __init__(self):
- super(InlineMulADD, self).__init__()
- self.mul_add = MulAdd()
- self.param = 2
-
- def construct(self, x, y):
- return self.mul_add(x, y) + x + self.param * y
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_grad_inline_mul_add():
- inline_mul_add = InlineMulADD()
- x = Tensor(1, dtype=ms.int32)
- y = Tensor(2, dtype=ms.int32)
- assert grad_all(inline_mul_add)(x, y) == (3, 6)
-
-
- class WithParameter(nn.Cell):
- def __init__(self):
- super(WithParameter, self).__init__()
- self.param1 = Parameter(1, 'param1')
- self.param2 = Parameter(2, 'param2')
-
- def construct(self, x, y):
- return self.param1 * self.param2 * x + y
-
- def bprop(self, x, y, out, dout):
- # In this test case, The user defined bprop is wrong defined purposely to distinguish from ad result
- return self.param1 * self.param2 * dout, 2 * y
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_with_param():
- with_param = WithParameter()
- with pytest.raises(RuntimeError):
- grad_all(with_param)(1, 2)
-
-
- class WithNoBprop(nn.Cell):
- def construct(self, x, y):
- return 2 * x + y
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_with_no_bprop():
- with_no_bprop = WithNoBprop()
- x = Tensor(1, dtype=ms.int32)
- y = Tensor(2, dtype=ms.int32)
- assert grad_all(with_no_bprop)(x, y) == (2, 1)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_grad_in_bprop_1():
- class GradInBprop_1(nn.Cell):
- def __init__(self):
- super(GradInBprop_1, self).__init__()
- self.relu = P.ReLU()
-
- def construct(self, x, y):
- return self.relu(x)
-
- class GradInBprop_2(nn.Cell):
- def __init__(self):
- super(GradInBprop_2, self).__init__()
- self.f = GradInBprop_1()
-
- def construct(self, x, y):
- return self.f(x, y), grad_all(self.f)(x, y)
-
- def bprop(self, x, y, out, dout):
- grads = grad_all(self.f)(x, y)
- return out[1][0], grads[1]
-
- class GradInBprop_3(nn.Cell):
- def __init__(self):
- super(GradInBprop_3, self).__init__()
- self.f = GradInBprop_2()
-
- def construct(self, x, y):
- return self.f(x, y)
-
- grad_in_bprop = GradInBprop_3()
- grads = grad_all(grad_in_bprop)(Tensor(np.ones([2, 2]).astype(np.float32)),
- Tensor(np.ones([2, 2]).astype(np.float32)))
- assert (grads[0].asnumpy() == np.ones([2, 2]).astype(np.float32)).all()
- assert (grads[1].asnumpy() == np.zeros([2, 2]).astype(np.float32)).all()
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_grad_in_bprop_2():
- class GradInBprop_1(nn.Cell):
- def __init__(self):
- super(GradInBprop_1, self).__init__()
- self.relu = P.ReLU()
-
- def construct(self, x, y):
- return self.relu(x)
-
- def bprop(self, x, y, out, dout):
- return x * y, y + x
-
- class GradInBprop_2(nn.Cell):
- def __init__(self):
- super(GradInBprop_2, self).__init__()
- self.f = GradInBprop_1()
-
- def construct(self, x, y):
- return self.f(x, y), grad_all(self.f)(x, y)
-
- def bprop(self, x, y, out, dout):
- grads = grad_all(self.f)(x, y)
- return out[1][0], grads[1]
-
- class GradInBprop_3(nn.Cell):
- def __init__(self):
- super(GradInBprop_3, self).__init__()
- self.f = GradInBprop_2()
-
- def construct(self, x, y):
- return self.f(x, y)
-
- grad_in_bprop = GradInBprop_3()
- grads = grad_all(grad_in_bprop)(Tensor(np.ones([2, 2]).astype(np.float32)),
- Tensor(np.ones([2, 2]).astype(np.float32)))
- assert (grads[0].asnumpy() == np.ones([2, 2]).astype(np.float32)).all()
- assert (grads[1].asnumpy() == np.array([[2, 2], [2, 2]]).astype(np.float32)).all()
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_grad_in_bprop_3():
- class GradInBprop_1(nn.Cell):
- def __init__(self):
- super(GradInBprop_1, self).__init__()
- self.relu = P.ReLU()
-
- def construct(self, x, y):
- return self.relu(x)
-
- class GradInBprop_2(nn.Cell):
- def __init__(self):
- super(GradInBprop_2, self).__init__()
- self.f = GradInBprop_1()
-
- def construct(self, x, y):
- return self.f(x, y), grad_all(self.f)(x, y)
-
- def bprop(self, x, y, out, dout):
- grads = grad_all(self.f)(x, y)
- return out[1][0], grads[1]
-
- class GradInBprop_3(nn.Cell):
- def __init__(self):
- super(GradInBprop_3, self).__init__()
- self.f = GradInBprop_2()
-
- def construct(self, x, y):
- return self.f(x, y)
-
- def bprop(self, x, y, out, dout):
- return x + y + y + out[0], x + x + y + y + dout[0]
-
- grad_in_bprop = GradInBprop_3()
- grads = grad_all(grad_in_bprop)(Tensor(np.ones([2, 2]).astype(np.float32)),
- Tensor(np.ones([2, 2]).astype(np.float32)))
- assert (grads[0].asnumpy() == np.array([[4, 4], [4, 4]]).astype(np.float32)).all()
- assert (grads[1].asnumpy() == np.array([[5, 5], [5, 5]]).astype(np.float32)).all()
-
-
- class OneInputBprop(nn.Cell):
- def __init__(self):
- super().__init__()
- self.op = P.ReLU()
-
- def construct(self, x):
- return self.op(x)
-
- def bprop(self, x, out, dout):
- return (5 * x,)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_grad_one_input_bprop():
- net = OneInputBprop()
- input1 = Tensor(np.ones([2, 2]).astype(np.float32))
- grad = grad_all(net)(input1)
- assert (grad[0].asnumpy() == np.array([5, 5]).astype(np.float32)).all()
-
-
- class TwoInput(nn.Cell):
- def construct(self, x, y):
- return x * y
-
-
- class InlineBpropTwoInput(nn.Cell):
- def __init__(self):
- super().__init__()
- self.f = TwoInput()
-
- def construct(self, x, y):
- return self.f(x, y), grad_all(self.f)(x, y)
-
- def bprop(self, x, y, out, dout):
- grads = grad_all(self.f)(x, y)
- return grads[0] * 2, grads[1] * 2
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_grad_inline_bprop_two_input():
- net = InlineBpropTwoInput()
- input1 = Tensor(np.ones([2, 2]).astype(np.float32))
- input2 = Tensor(np.ones([2, 2]).astype(np.float32))
- grads = grad_all(net)(input1, input2)
- assert (grads[0].asnumpy() == np.array([2, 2]).astype(np.float32)).all()
- assert (grads[1].asnumpy() == np.array([2, 2]).astype(np.float32)).all()
- assert len(grads) == 2
-
-
- class TwoInputBprop(nn.Cell):
- def __init__(self):
- super().__init__()
- self.op = P.Mul()
-
- def construct(self, x, y):
- return self.op(x, y)
-
- def bprop(self, x, y, out, dout):
- return 5 * x, 8 * y
-
-
- class TwoInputWithParameter(nn.Cell):
- def __init__(self):
- super().__init__()
- self.op = P.Mul()
- self.inputdata = Parameter(initializer(1, (2, 2), mstype.float32), name="global_step")
-
- def construct(self, x, y):
- x = self.inputdata + x
- return self.op(x, y)
-
-
- class TwoInputWithOnlyInitParameterBprop(nn.Cell):
- def __init__(self):
- super().__init__()
- self.op = P.Mul()
- self.inputdata = Parameter(initializer(1, (2, 2), mstype.float32), name="global_step")
-
- def construct(self, x, y):
- return self.op(x, y)
-
- def bprop(self, x, y, out, dout):
- return 5 * x, 8 * y
-
-
- class InlineMutilTwoInputParameterCell(nn.Cell):
- def __init__(self):
- super().__init__()
- self.f1 = TwoInputBprop()
- self.f2 = TwoInput()
- self.f3 = TwoInputWithParameter()
- self.f4 = TwoInputWithOnlyInitParameterBprop()
-
- def construct(self, x, y):
- output = self.f1(x, y) + self.f2(x, y) + self.f3(x, y) + self.f4(x, y)
- return output
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_grad_inline_bprop_multi_input():
- net = InlineMutilTwoInputParameterCell()
- input1 = Tensor(np.ones([2, 2]).astype(np.float32))
- input2 = Tensor(np.ones([2, 2]).astype(np.float32))
- net.init_parameters_data()
- grads = grad_all(net)(input1, input2)
- assert (grads[0].asnumpy() == np.array([[12, 12], [12, 12]]).astype(np.float32)).all()
- assert (grads[1].asnumpy() == np.array([[19, 19], [19, 19]]).astype(np.float32)).all()
- assert len(grads) == 2
-
-
- class MulAddWithParam(nn.Cell):
- def __init__(self):
- super(MulAddWithParam, self).__init__()
- self.mul_add = MulAdd()
- self.param = Parameter(Tensor(np.array([[3, 2]], np.float32)), 'param')
-
- def construct(self, x):
- return self.mul_add(self.param, x)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_refkey_bprop():
- grad_by_list = C.GradOperation(get_all=True, get_by_list=True)
- class GradWrap(nn.Cell):
- def __init__(self, network):
- super(GradWrap, self).__init__()
- self.network = network
- self.weights = ParameterTuple(filter(lambda x: x.requires_grad, network.get_parameters()))
- def construct(self, x):
- weights = self.weights
- grads = grad_by_list(self.network, weights)(x)
- return grads
- network = GradWrap(MulAddWithParam())
- input_data = Tensor(np.array([2, 2], np.float32))
- grads = network(input_data)
- assert (grads[0][0].asnumpy() == np.array([4, 4]).astype(np.float32)).all()
- assert (grads[1][0].asnumpy() == np.array([2, 2]).astype(np.float32)).all()
-
-
- class MulAddWithWrongOutputNum(nn.Cell):
- def construct(self, x, y):
- return 2 * x + y
-
- def bprop(self, x, y, out, dout):
- return (2 * dout,)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_grad_mul_add_with_wrong_output_num():
- context.set_context(check_bprop=True)
- mul_add = MulAddWithWrongOutputNum()
- with pytest.raises(TypeError):
- grad_all(mul_add)(1, 2)
-
-
- class MulAddWithWrongOutputType(nn.Cell):
- def construct(self, x, y):
- return 2 * x + y
-
- def bprop(self, x, y, out, dout):
- return 2 * dout, 2
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_grad_mul_add_with_wrong_output_type():
- context.set_context(check_bprop=True)
- mul_add = MulAddWithWrongOutputType()
- with pytest.raises(TypeError):
- grad_all(mul_add)(1, Tensor(np.ones([2, 2])))
-
-
- class MulAddWithWrongOutputShape(nn.Cell):
- def __init__(self):
- super(MulAddWithWrongOutputShape, self).__init__()
- self.ones = Tensor(np.ones([2,]))
-
- def construct(self, x, y):
- return 2 * x + y
-
- def bprop(self, x, y, out, dout):
- return 2, self.ones
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_grad_mul_add_with_wrong_output_shape():
- context.set_context(check_bprop=True)
- mul_add = MulAddWithWrongOutputShape()
- with pytest.raises(TypeError):
- grad_all(mul_add)(1, Tensor(np.ones([2, 2])))
|