| @@ -43,7 +43,7 @@ class OfaImageCaptioningPreprocessor(OfaBasePreprocessor): | |||||
| def _build_train_sample(self, data: Dict[str, Any]) -> Dict[str, Any]: | def _build_train_sample(self, data: Dict[str, Any]) -> Dict[str, Any]: | ||||
| sample = self._build_infer_sample(data) | sample = self._build_infer_sample(data) | ||||
| target = data[self.column_map['text']] | |||||
| target = sample['label'] | |||||
| target = target.translate(self.transtab).strip() | target = target.translate(self.transtab).strip() | ||||
| target_token_list = target.strip().split() | target_token_list = target.strip().split() | ||||
| target = ' '.join(target_token_list[:self.max_tgt_length]) | target = ' '.join(target_token_list[:self.max_tgt_length]) | ||||
| @@ -85,11 +85,11 @@ class OfaImageClassificationPreprocessor(OfaBasePreprocessor): | |||||
| def _build_train_sample(self, data: Dict[str, Any]) -> Dict[str, Any]: | def _build_train_sample(self, data: Dict[str, Any]) -> Dict[str, Any]: | ||||
| sample = self._build_infer_sample(data) | sample = self._build_infer_sample(data) | ||||
| target = ' {}'.format(data[self.column_map['text']]) | |||||
| sample['ref_dict'] = {data[self.column_map['text']]: 1.0} | |||||
| target = ' {}'.format(sample['label']) | |||||
| sample['ref_dict'] = {sample['label']: 1.0} | |||||
| sample['target'] = self.tokenize_text(target, add_bos=False) | sample['target'] = self.tokenize_text(target, add_bos=False) | ||||
| sample['prev_output_tokens'] = torch.cat( | sample['prev_output_tokens'] = torch.cat( | ||||
| [self.bos_item, sample['target']]) | |||||
| [self.bos_item, sample['target'][:-1]]) | |||||
| if self.constraint_trie is not None: | if self.constraint_trie is not None: | ||||
| constraint_mask = torch.zeros((len(sample['prev_output_tokens']), | constraint_mask = torch.zeros((len(sample['prev_output_tokens']), | ||||
| @@ -109,6 +109,6 @@ class OfaOcrRecognitionPreprocessor(OfaBasePreprocessor): | |||||
| } | } | ||||
| if 'text' in self.column_map and self.column_map['text'] in data: | if 'text' in self.column_map and self.column_map['text'] in data: | ||||
| target = data[self.column_map['text']] | target = data[self.column_map['text']] | ||||
| target = unicodedata2.normalize('NFKC', convert(target, 'zh-hans')) | |||||
| sample['label'] = target | |||||
| sample['label'] = unicodedata2.normalize( | |||||
| 'NFKC', convert(target, 'zh-hans')) | |||||
| return sample | return sample | ||||
| @@ -1,6 +1,8 @@ | |||||
| # Copyright (c) Alibaba, Inc. and its affiliates. | # Copyright (c) Alibaba, Inc. and its affiliates. | ||||
| from typing import Any, Dict | from typing import Any, Dict | ||||
| import torch | |||||
| from modelscope.utils.constant import ModeKeys | from modelscope.utils.constant import ModeKeys | ||||
| from .base import OfaBasePreprocessor | from .base import OfaBasePreprocessor | ||||
| @@ -24,9 +26,27 @@ class OfaSummarizationPreprocessor(OfaBasePreprocessor): | |||||
| self).__init__(cfg, model_dir, mode, *args, **kwargs) | self).__init__(cfg, model_dir, mode, *args, **kwargs) | ||||
| def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: | def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: | ||||
| if self.mode == ModeKeys.TRAIN: | |||||
| return self._build_train_sample(data) | |||||
| else: | |||||
| return self._build_infer_sample(data) | |||||
| def _build_train_sample(self, data: Dict[str, Any]) -> Dict[str, Any]: | |||||
| sample = self._build_infer_sample(data) | |||||
| target_str = sample['label'].lower() | |||||
| target = super().pre_caption(target_str, max_words=self.max_tgt_length) | |||||
| target = target.replace('[unk]', 'unk').replace('<unk>', 'unk') | |||||
| sample['target'] = self.tokenize_text(target, add_bos=False) | |||||
| noise_target_item = self.add_noise_to_tgt( | |||||
| sample['target'][:-1].clone()) | |||||
| sample['prev_output_tokens'] = torch.cat( | |||||
| [self.bos_item, noise_target_item]) | |||||
| return sample | |||||
| def _build_infer_sample(self, data: Dict[str, Any]) -> Dict[str, Any]: | |||||
| source = super().pre_caption( | source = super().pre_caption( | ||||
| data['text'], max_words=self.max_src_length) | |||||
| source = source.strip()[:self.max_src_length] | |||||
| data[self.column_map['text']], max_words=self.max_src_length) | |||||
| # source = source.strip()[:self.max_src_length] | |||||
| source = source.replace('[unk]', 'unk').replace('<unk>', 'unk') | source = source.replace('[unk]', 'unk').replace('<unk>', 'unk') | ||||
| prompt = self.cfg.model.get( | prompt = self.cfg.model.get( | ||||
| 'prompt', ' " {} " Summarize the article with a title: ') | 'prompt', ' " {} " Summarize the article with a title: ') | ||||
| @@ -42,4 +62,16 @@ class OfaSummarizationPreprocessor(OfaBasePreprocessor): | |||||
| 'source': inputs, | 'source': inputs, | ||||
| 'decoder_prompt': decoder_prompt, | 'decoder_prompt': decoder_prompt, | ||||
| } | } | ||||
| if 'summary' in self.column_map and self.column_map['summary'] in data: | |||||
| sample['label'] = data[self.column_map['summary']] | |||||
| return sample | return sample | ||||
| def add_noise_to_tgt(self, target): | |||||
| noise_indices = torch.FloatTensor( | |||||
| target.size(0)).uniform_() < self.cfg.model.get( | |||||
| 'noise_ratio', 0.0) | |||||
| target[noise_indices] = torch.randint( | |||||
| 4, | |||||
| len(self.src_dict) - self.code_dict_size - self.num_bins, | |||||
| size=(noise_indices.sum(), )) | |||||
| return target | |||||
| @@ -38,8 +38,51 @@ class OfaVisualEntailmentPreprocessor(OfaBasePreprocessor): | |||||
| ]) | ]) | ||||
| def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: | def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: | ||||
| image = data['image'] if isinstance( | |||||
| data['image'], Image.Image) else load_image(data['image']) | |||||
| if self.mode == ModeKeys.TRAIN: | |||||
| return self._build_train_sample(data) | |||||
| else: | |||||
| return self._build_infer_sample(data) | |||||
| def _build_train_sample(self, data: Dict[str, Any]) -> Dict[str, Any]: | |||||
| sample = self._build_infer_sample(data) | |||||
| target = ' {}'.format(sample['label']) | |||||
| sample['ref_dict'] = {sample['label']: 1.0} | |||||
| tgt_item = self.tokenize_text(target, add_bos=False, add_eos=False) | |||||
| if self.prompt_type == 'none': | |||||
| prev_output_item = torch.cat([self.bos_item, tgt_item]) | |||||
| target_item = torch.cat([prev_output_item[1:], self.eos_item]) | |||||
| elif self.prompt_type == 'src': | |||||
| prev_output_item = torch.cat([sample['source'], tgt_item]) | |||||
| target_item = torch.cat([prev_output_item[1:], self.eos_item]) | |||||
| elif self.prompt_type == 'prev_output': | |||||
| prev_output_item = torch.cat([sample['source'][:-1], tgt_item]) | |||||
| target_item = torch.cat([prev_output_item[1:], self.eos_item]) | |||||
| else: | |||||
| raise NotImplementedError | |||||
| target_item[:-len(tgt_item) - 1] = self.tgt_dict.pad() | |||||
| sample['target'] = target_item | |||||
| sample['prev_output_tokens'] = prev_output_item | |||||
| if self.constraint_trie is not None: | |||||
| constraint_mask = torch.zeros( | |||||
| (len(target_item), len(self.tgt_dict))).bool() | |||||
| start_idx = len(target_item) - len(tgt_item) - 1 | |||||
| for i in range( | |||||
| len(target_item) - len(tgt_item) - 1, len(target_item)): | |||||
| constraint_prefix_token = [ | |||||
| self.tgt_dict.bos() | |||||
| ] + target_item[start_idx:i].tolist() | |||||
| constraint_nodes = self.constraint_trie.get_next_layer( | |||||
| constraint_prefix_token) | |||||
| constraint_mask[i][constraint_nodes] = True | |||||
| sample['constraint_mask'] = constraint_mask | |||||
| return sample | |||||
| def _build_infer_sample(self, data: Dict[str, Any]) -> Dict[str, Any]: | |||||
| image = self.get_img_pil(data[self.column_map['image']]) | |||||
| patch_image = self.patch_resize_transform(image) | patch_image = self.patch_resize_transform(image) | ||||
| if 'text2' not in data: | if 'text2' not in data: | ||||
| hypothesis = self.pre_caption(data['text'], self.max_src_length) | hypothesis = self.pre_caption(data['text'], self.max_src_length) | ||||
| @@ -68,4 +111,7 @@ class OfaVisualEntailmentPreprocessor(OfaBasePreprocessor): | |||||
| 'patch_mask': torch.tensor([True]), | 'patch_mask': torch.tensor([True]), | ||||
| 'decoder_prompt': decoder_prompt, | 'decoder_prompt': decoder_prompt, | ||||
| } | } | ||||
| if 'relation' in self.column_map and self.column_map[ | |||||
| 'relation'] in data: | |||||
| sample['label'] = data[self.column_map['relation']] | |||||
| return sample | return sample | ||||
| @@ -1,6 +1,7 @@ | |||||
| # Copyright (c) Alibaba, Inc. and its affiliates. | # Copyright (c) Alibaba, Inc. and its affiliates. | ||||
| from typing import Any, Dict | from typing import Any, Dict | ||||
| import numpy as np | |||||
| import torch | import torch | ||||
| from PIL import Image | from PIL import Image | ||||
| from torchvision import transforms | from torchvision import transforms | ||||
| @@ -27,24 +28,95 @@ class OfaVisualGroundingPreprocessor(OfaBasePreprocessor): | |||||
| """ | """ | ||||
| super(OfaVisualGroundingPreprocessor, | super(OfaVisualGroundingPreprocessor, | ||||
| self).__init__(cfg, model_dir, mode, *args, **kwargs) | self).__init__(cfg, model_dir, mode, *args, **kwargs) | ||||
| # Initialize transform | |||||
| self.patch_resize_transform = transforms.Compose([ | |||||
| lambda image: image.convert('RGB'), | |||||
| transforms.Resize( | |||||
| (self.patch_image_size, self.patch_image_size), | |||||
| interpolation=transforms.InterpolationMode.BICUBIC), | |||||
| transforms.ToTensor(), | |||||
| transforms.Normalize(mean=self.mean, std=self.std), | |||||
| ]) | |||||
| if self.mode == ModeKeys.TRAIN: | |||||
| # for positioning | |||||
| self.positioning_transform = transforms.Compose([ | |||||
| transforms.RandomResize([self.patch_image_size], | |||||
| max_size=self.patch_image_size), | |||||
| transforms.ToTensor(), | |||||
| transforms.Normalize( | |||||
| mean=self.mean, | |||||
| std=self.std, | |||||
| max_image_size=self.max_image_size) | |||||
| ]) | |||||
| else: | |||||
| # Initialize transform | |||||
| self.patch_resize_transform = transforms.Compose([ | |||||
| lambda image: image.convert('RGB'), | |||||
| transforms.Resize( | |||||
| (self.patch_image_size, self.patch_image_size), | |||||
| interpolation=transforms.InterpolationMode.BICUBIC), | |||||
| transforms.ToTensor(), | |||||
| transforms.Normalize(mean=self.mean, std=self.std), | |||||
| ]) | |||||
| def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: | def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: | ||||
| image = data['image'] if isinstance( | |||||
| data['image'], Image.Image) else load_image(data['image']) | |||||
| if self.mode == ModeKeys.TRAIN: | |||||
| return self._build_train_sample(data) | |||||
| else: | |||||
| return self._build_infer_sample(data) | |||||
| def _build_train_sample(self, data: Dict[str, Any]) -> Dict[str, Any]: | |||||
| image = self.get_img_pil(data[self.column_map['image']]) | |||||
| w, h = image.size | |||||
| b_tgt = { | |||||
| 'boxes': [], | |||||
| 'labels': [], | |||||
| 'area': [], | |||||
| 'size': torch.tensor([h, w]) | |||||
| } | |||||
| x0, y0, x1, y1 = data[self.column_map['region_coord']].strip().split( | |||||
| ',') | |||||
| region = torch.tensor([float(x0), float(y0), float(x1), float(y1)]) | |||||
| b_tgt['boxes'] = torch.tensor( | |||||
| [[float(x0), float(y0), float(x1), | |||||
| float(y1)]]) | |||||
| b_tgt['labels'] = np.array([0]) | |||||
| b_tgt['area'] = [(float(x1) - float(x0)) * (float(y1) - float(y0))] | |||||
| patch_image, patch_boxes = self.positioning_transform(image, b_tgt) | |||||
| resize_h, resize_w = patch_boxes['size'][0], patch_boxes['size'][1] | |||||
| quant_x0 = '<bin_{}>'.format( | |||||
| int((patch_boxes['boxes'][0][0] * (self.num_bins - 1)).round())) | |||||
| quant_y0 = '<bin_{}>'.format( | |||||
| int((patch_boxes['boxes'][0][1] * (self.num_bins - 1)).round())) | |||||
| quant_x1 = '<bin_{}>'.format( | |||||
| int((patch_boxes['boxes'][0][2] * (self.num_bins - 1)).round())) | |||||
| quant_y1 = '<bin_{}>'.format( | |||||
| int((patch_boxes['boxes'][0][3] * (self.num_bins - 1)).round())) | |||||
| region_coord = '{} {} {} {}'.format(quant_x0, quant_y0, quant_x1, | |||||
| quant_y1) | |||||
| src_caption = self.pre_caption(data[self.column_map['text']], | |||||
| self.max_src_length) | |||||
| prompt = self.cfg.model.get( | |||||
| 'prompt', ' which region does the text " {} " describe?') | |||||
| text = prompt.format(src_caption) | |||||
| src_item = self.tokenize_text(text) | |||||
| target_item = self.tokenize_text( | |||||
| region_coord, add_bos=False) # !!! use_bpe=False | |||||
| prev_output_item = torch.cat([self.bos_item, target_item[:-1]]) | |||||
| sample = { | |||||
| 'source': src_item, | |||||
| 'patch_image': patch_image, | |||||
| 'patch_mask': torch.tensor([True]), | |||||
| 'target': target_item, | |||||
| 'prev_output_tokens': prev_output_item, | |||||
| 'w_resize_ratio': resize_w / w, | |||||
| 'h_resize_ratio': resize_h / h, | |||||
| 'region_coord': region | |||||
| } | |||||
| return sample | |||||
| def _build_infer_sample(self, data: Dict[str, Any]) -> Dict[str, Any]: | |||||
| image = self.get_img_pil(data[self.column_map['image']]) | |||||
| w, h = image.size | w, h = image.size | ||||
| patch_image = self.patch_resize_transform(image) | patch_image = self.patch_resize_transform(image) | ||||
| w_resize_ratio = torch.tensor(self.patch_image_size / w) | w_resize_ratio = torch.tensor(self.patch_image_size / w) | ||||
| h_resize_ratio = torch.tensor(self.patch_image_size / h) | h_resize_ratio = torch.tensor(self.patch_image_size / h) | ||||
| src_caption = self.pre_caption(data['text'], self.max_src_length) | |||||
| src_caption = self.pre_caption(data[self.column_map['text']], | |||||
| self.max_src_length) | |||||
| prompt = self.cfg.model.get( | prompt = self.cfg.model.get( | ||||
| 'prompt', ' which region does the text " {} " describe?') | 'prompt', ' which region does the text " {} " describe?') | ||||
| text = prompt.format(src_caption) | text = prompt.format(src_caption) | ||||
| @@ -38,10 +38,70 @@ class OfaVisualQuestionAnsweringPreprocessor(OfaBasePreprocessor): | |||||
| ]) | ]) | ||||
| def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: | def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: | ||||
| image = data['image'] if isinstance( | |||||
| data['image'], Image.Image) else load_image(data['image']) | |||||
| if self.mode == ModeKeys.TRAIN: | |||||
| return self._build_train_sample(data) | |||||
| else: | |||||
| return self._build_infer_sample(data) | |||||
| def _build_train_sample(self, data: Dict[str, Any]) -> Dict[str, Any]: | |||||
| sample = self._build_infer_sample(data) | |||||
| src_item = sample['source'] | |||||
| ref = data[self.column_map['ref']] | |||||
| predict_objects = data[self.column_map['predict_objects']] | |||||
| ref_dict = { | |||||
| item.split('|!+')[1]: float(item.split('|!+')[0]) | |||||
| for item in ref.split('&&') | |||||
| } | |||||
| answer = max(ref_dict, key=ref_dict.get) | |||||
| sample['conf'] = torch.tensor([ref_dict[answer]]) | |||||
| tgt_item = self.tokenize_text( | |||||
| ' {}'.format(answer), add_bos=False, add_eos=False) | |||||
| if self.add_object and predict_objects is not None: | |||||
| predict_object_seq = ' '.join( | |||||
| predict_objects.strip().split('&&')[:self.max_object_length]) | |||||
| predict_object_item = self.tokenize_text( | |||||
| ' object: {}'.format(predict_object_seq), add_bos=False) | |||||
| src_item = torch.cat([src_item, predict_object_item[:-1]]) | |||||
| if self.prompt_type == 'none': | |||||
| prev_output_item = torch.cat([self.bos_item, tgt_item]) | |||||
| target_item = torch.cat([prev_output_item[1:], self.eos_item]) | |||||
| elif self.prompt_type == 'src': | |||||
| prev_output_item = torch.cat([src_item, tgt_item]) | |||||
| target_item = torch.cat([prev_output_item[1:], self.eos_item]) | |||||
| elif self.prompt_type == 'prev_output': | |||||
| prev_output_item = torch.cat([src_item[:-1], tgt_item]) | |||||
| target_item = torch.cat([prev_output_item[1:], self.eos_item]) | |||||
| else: | |||||
| raise NotImplementedError | |||||
| target_item[:-len(tgt_item) - 1] = self.tgt_dict.pad() | |||||
| sample['prev_output_tokens'] = prev_output_item | |||||
| sample['target'] = target_item | |||||
| sample['ref_dict'] = ref_dict | |||||
| if self.constraint_trie is not None: | |||||
| constraint_mask = torch.zeros( | |||||
| (len(target_item), len(self.tgt_dict))).bool() | |||||
| start_idx = len(target_item) - len(tgt_item) - 1 | |||||
| for i in range( | |||||
| len(target_item) - len(tgt_item) - 1, len(target_item)): | |||||
| constraint_prefix_token = [ | |||||
| self.tgt_dict.bos() | |||||
| ] + target_item[start_idx:i].tolist() | |||||
| constraint_nodes = self.constraint_trie.get_next_layer( | |||||
| constraint_prefix_token) | |||||
| constraint_mask[i][constraint_nodes] = True | |||||
| sample['constraint_mask'] = constraint_mask | |||||
| return sample | |||||
| def _build_infer_sample(self, data: Dict[str, Any]) -> Dict[str, Any]: | |||||
| image = self.get_img_pil(data[self.column_map['image']]) | |||||
| patch_image = self.patch_resize_transform(image) | patch_image = self.patch_resize_transform(image) | ||||
| text = ' {}'.format(data['text']) | |||||
| text = ' {}'.format(data[self.column_map['text']]) | |||||
| inputs = self.tokenize_text(text) | inputs = self.tokenize_text(text) | ||||
| if self.prompt_type == 'none': | if self.prompt_type == 'none': | ||||
| decoder_prompt = self.bos_item | decoder_prompt = self.bos_item | ||||
| @@ -57,4 +117,6 @@ class OfaVisualQuestionAnsweringPreprocessor(OfaBasePreprocessor): | |||||
| 'patch_mask': torch.tensor([True]), | 'patch_mask': torch.tensor([True]), | ||||
| 'decoder_prompt': decoder_prompt, | 'decoder_prompt': decoder_prompt, | ||||
| } | } | ||||
| if 'answer' in self.column_map and self.column_map['answer'] in data: | |||||
| sample['label'] = data[self.column_map['answer']] | |||||
| return sample | return sample | ||||