|
- # Copyright (c) Alibaba, Inc. and its affiliates.
- from typing import Any, Dict
-
- import torch
- from torchvision import transforms
-
- from modelscope.utils.constant import ModeKeys
- from .base import OfaBasePreprocessor
-
-
- class OfaImageCaptioningPreprocessor(OfaBasePreprocessor):
-
- def __init__(self,
- cfg,
- model_dir,
- mode=ModeKeys.INFERENCE,
- *args,
- **kwargs):
- """preprocess the data
-
- Args:
- cfg(modelscope.utils.config.ConfigDict) : model config
- model_dir (str): model path,
- mode: preprocessor mode (model mode)
- """
- super(OfaImageCaptioningPreprocessor,
- self).__init__(cfg, model_dir, mode, *args, **kwargs)
- # Initialize transform
- self.patch_resize_transform = transforms.Compose([
- lambda image: image.convert('RGB'),
- transforms.Resize(
- (self.patch_image_size, self.patch_image_size),
- interpolation=transforms.InterpolationMode.BICUBIC),
- transforms.ToTensor(),
- transforms.Normalize(mean=self.mean, std=self.std),
- ])
-
- def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
- if self.mode == ModeKeys.TRAIN:
- return self._build_train_sample(data)
- else:
- return self._build_infer_sample(data)
-
- def _build_train_sample(self, data: Dict[str, Any]) -> Dict[str, Any]:
- sample = self._build_infer_sample(data)
- target = sample['label']
- target = target.translate(self.transtab).strip()
- target_token_list = target.strip().split()
- target = ' '.join(target_token_list[:self.max_tgt_length])
- sample['target'] = self.tokenize_text(target, add_bos=False)
- sample['prev_output_tokens'] = torch.cat(
- [self.bos_item, sample['target'][:-1]])
- return sample
-
- def _build_infer_sample(self, data: Dict[str, Any]) -> Dict[str, Any]:
- image = self.get_img_pil(data[self.column_map['image']])
- patch_image = self.patch_resize_transform(image)
- prompt = self.cfg.model.get('prompt', ' what does the image describe?')
- inputs = self.tokenize_text(prompt)
- sample = {
- 'source': inputs,
- 'patch_image': patch_image,
- 'patch_mask': torch.tensor([True])
- }
- if 'text' in self.column_map and self.column_map['text'] in data:
- sample['label'] = data[self.column_map['text']]
- return sample
|