|
- # Copyright (c) Alibaba, Inc. and its affiliates.
- from typing import Any, Dict
-
- import torch
-
- from modelscope.utils.constant import ModeKeys
- from .base import OfaBasePreprocessor
-
-
- class OfaSummarizationPreprocessor(OfaBasePreprocessor):
-
- def __init__(self,
- cfg,
- model_dir,
- mode=ModeKeys.INFERENCE,
- *args,
- **kwargs):
- """preprocess the data
-
- Args:
- cfg(modelscope.utils.config.ConfigDict) : model config
- model_dir (str): model path,
- mode: preprocessor mode (model mode)
- """
- super(OfaSummarizationPreprocessor,
- self).__init__(cfg, model_dir, mode, *args, **kwargs)
-
- def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
- if self.mode == ModeKeys.TRAIN:
- return self._build_train_sample(data)
- else:
- return self._build_infer_sample(data)
-
- def _build_train_sample(self, data: Dict[str, Any]) -> Dict[str, Any]:
- sample = self._build_infer_sample(data)
- target_str = sample['label'].lower()
- target = super().pre_caption(target_str, max_words=self.max_tgt_length)
- target = target.replace('[unk]', 'unk').replace('<unk>', 'unk')
- sample['target'] = self.tokenize_text(target, add_bos=False)
- noise_target_item = self.add_noise_to_tgt(
- sample['target'][:-1].clone())
- sample['prev_output_tokens'] = torch.cat(
- [self.bos_item, noise_target_item])
- return sample
-
- def _build_infer_sample(self, data: Dict[str, Any]) -> Dict[str, Any]:
- source = super().pre_caption(
- data[self.column_map['text']], max_words=self.max_src_length)
- # source = source.strip()[:self.max_src_length]
- source = source.replace('[unk]', 'unk').replace('<unk>', 'unk')
- prompt = self.cfg.model.get(
- 'prompt', ' " {} " Summarize the article with a title: ')
- text = prompt.format(source)
- inputs = self.tokenize_text(text)
- if self.prompt_type == 'none':
- decoder_prompt = self.bos_item
- elif self.prompt_type == 'prev_output':
- decoder_prompt = inputs[:-1]
- else:
- raise NotImplementedError
- sample = {
- 'source': inputs,
- 'decoder_prompt': decoder_prompt,
- }
- if 'summary' in self.column_map and self.column_map['summary'] in data:
- sample['label'] = data[self.column_map['summary']]
- return sample
-
- def add_noise_to_tgt(self, target):
- noise_indices = torch.FloatTensor(
- target.size(0)).uniform_() < self.cfg.model.get(
- 'noise_ratio', 0.0)
- target[noise_indices] = torch.randint(
- 4,
- len(self.src_dict) - self.code_dict_size - self.num_bins,
- size=(noise_indices.sum(), ))
- return target
|