|
- # Copyright (c) Alibaba, Inc. and its affiliates.
- import functools
- from typing import Any, Dict
-
- import torch
- from PIL import Image, ImageFile
- from timm.data import create_transform
- from torchvision import transforms
-
- from modelscope.preprocessors.image import load_image
- from modelscope.utils.constant import ModeKeys
- from .base import OfaBasePreprocessor
- from .utils.vision_helper import RandomAugment
-
- ImageFile.LOAD_TRUNCATED_IMAGES = True
- ImageFile.MAX_IMAGE_PIXELS = None
- Image.MAX_IMAGE_PIXELS = None
-
-
- class OfaImageClassificationPreprocessor(OfaBasePreprocessor):
-
- def __init__(self,
- cfg,
- model_dir,
- mode=ModeKeys.INFERENCE,
- *args,
- **kwargs):
- """preprocess the data
-
- Args:
- cfg(modelscope.utils.config.ConfigDict) : model config
- model_dir (str): model path,
- mode: preprocessor mode (model mode)
- """
- super(OfaImageClassificationPreprocessor,
- self).__init__(cfg, model_dir, mode, *args, **kwargs)
- # Initialize transform
- if self.mode != ModeKeys.TRAIN:
- self.patch_resize_transform = transforms.Compose([
- lambda image: image.convert('RGB'),
- transforms.Resize(
- (self.patch_image_size, self.patch_image_size),
- interpolation=transforms.InterpolationMode.BICUBIC),
- transforms.ToTensor(),
- transforms.Normalize(mean=self.mean, std=self.std),
- ])
- else:
- self.patch_resize_transform = create_transform(
- input_size=self.patch_image_size,
- is_training=True,
- color_jitter=0.4,
- auto_augment='rand-m9-mstd0.5-inc1',
- interpolation='bicubic',
- re_prob=0.25,
- re_mode='pixel',
- re_count=1,
- mean=self.mean,
- std=self.std)
- self.patch_resize_transform = transforms.Compose(
- functools.reduce(lambda x, y: x + y, [
- [
- lambda image: image.convert('RGB'),
- ],
- self.patch_resize_transform.transforms[:2],
- [self.patch_resize_transform.transforms[2]],
- [
- RandomAugment(
- 2,
- 7,
- isPIL=True,
- augs=[
- 'Identity', 'AutoContrast', 'Equalize',
- 'Brightness', 'Sharpness', 'ShearX', 'ShearY',
- 'TranslateX', 'TranslateY', 'Rotate'
- ]),
- ],
- self.patch_resize_transform.transforms[3:],
- ]))
-
- def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
- if self.mode == ModeKeys.TRAIN:
- return self._build_train_sample(data)
- else:
- return self._build_infer_sample(data)
-
- def _build_train_sample(self, data: Dict[str, Any]) -> Dict[str, Any]:
- sample = self._build_infer_sample(data)
- target = ' {}'.format(sample['label'])
- sample['ref_dict'] = {sample['label']: 1.0}
- sample['target'] = self.tokenize_text(target, add_bos=False)
- sample['prev_output_tokens'] = torch.cat(
- [self.bos_item, sample['target'][:-1]])
-
- if self.constraint_trie is not None:
- constraint_mask = torch.zeros((len(sample['prev_output_tokens']),
- len(self.tgt_dict))).bool()
- for i in range(len(sample['prev_output_tokens'])):
- constraint_prefix_token = sample[
- 'prev_output_tokens'][:i + 1].tolist()
- constraint_nodes = self.constraint_trie.get_next_layer(
- constraint_prefix_token)
- constraint_mask[i][constraint_nodes] = True
- sample['constraint_mask'] = constraint_mask
-
- return sample
-
- def _build_infer_sample(self, data: Dict[str, Any]) -> Dict[str, Any]:
- image = self.get_img_pil(data[self.column_map['image']])
- patch_image = self.patch_resize_transform(image)
- prompt = self.cfg.model.get('prompt', ' what does the image describe?')
- inputs = self.tokenize_text(prompt)
- sample = {
- 'source': inputs,
- 'patch_image': patch_image,
- 'patch_mask': torch.tensor([True])
- }
- if 'text' in self.column_map and self.column_map['text'] in data:
- sample['label'] = data[self.column_map['text']]
- return sample
|