You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_ops.py 95 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """ test ops """
  16. import functools
  17. import numpy as np
  18. import mindspore.nn as nn
  19. import mindspore.ops.composite as C
  20. from mindspore import Tensor
  21. from mindspore import ops, Parameter, context
  22. from mindspore.common import dtype as mstype
  23. from mindspore.ops import functional as F
  24. from mindspore.ops import operations as P
  25. from mindspore.ops.operations import _grad_ops as G
  26. from mindspore.ops.operations import _inner_ops as inner
  27. from mindspore.ops.operations._quant_ops import FakeQuantWithMinMaxVars, FakeQuantWithMinMaxVarsPerChannel
  28. from ..ut_filter import non_graph_engine
  29. from ....mindspore_test_framework.mindspore_test import mindspore_test
  30. from ....mindspore_test_framework.pipeline.forward.compile_forward \
  31. import (pipeline_for_compile_forward_ge_graph_for_case_by_case_config,
  32. pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
  33. from ....mindspore_test_framework.pipeline.gradient.compile_gradient \
  34. import pipeline_for_compile_grad_ge_graph_for_case_by_case_config
  35. from ....ops_common import convert
  36. grad_all_with_sens = C.GradOperation(get_all=True, sens_param=True)
  37. class InputBackward(nn.Cell):
  38. def __init__(self, network):
  39. super(InputBackward, self).__init__()
  40. self.network = network
  41. self.network.set_train()
  42. self.grad = grad_all_with_sens
  43. def construct(self, x1, x2, x3, sens):
  44. return self.grad(self.network)(x1, x2, x3, sens)
  45. class NetForTupleInput(nn.Cell):
  46. def __init__(self, op):
  47. super(NetForTupleInput, self).__init__()
  48. self.op = op
  49. def construct(self, x1, x2):
  50. return self.op((x1, x2))
  51. class StridedSlicessdNet(nn.Cell):
  52. def __init__(self):
  53. super(StridedSlicessdNet, self).__init__()
  54. self.rank = P.Rank()
  55. def construct(self, x1):
  56. return P.StridedSlice(1, 1, 0, self.rank(x1), 0)(x1, (0, 0), (0, 0), (1, 1))
  57. class NetForConcat(nn.Cell):
  58. def __init__(self):
  59. super(NetForConcat, self).__init__()
  60. self.concat = P.Concat()
  61. def construct(self, x1):
  62. return self.concat((x1, x1))
  63. class NetForConcat1(nn.Cell):
  64. def __init__(self):
  65. super(NetForConcat1, self).__init__()
  66. self.concat = P.Concat()
  67. def construct(self, x1, x2):
  68. return self.concat((x1, x2))
  69. class NetForConcat2(nn.Cell):
  70. def __init__(self):
  71. super(NetForConcat2, self).__init__()
  72. self.concat = P.Concat(axis=2)
  73. def construct(self, x1, x2):
  74. return self.concat((x1, x2))
  75. class NetForConcat3(nn.Cell):
  76. def __init__(self):
  77. super(NetForConcat3, self).__init__()
  78. self.concat = P.Concat(axis=0)
  79. def construct(self, x1, x2, x3):
  80. return self.concat((x1, x2, x3))
  81. class NetForConcat4(nn.Cell):
  82. def __init__(self):
  83. super(NetForConcat4, self).__init__()
  84. self.concat = P.Concat(axis=-1)
  85. def construct(self, x1, x2, x3):
  86. return self.concat((x1, x2, x3))
  87. class NetForPackInput(nn.Cell):
  88. def __init__(self, op):
  89. super(NetForPackInput, self).__init__()
  90. self.op = op
  91. self.mul = P.Mul()
  92. def construct(self, *args):
  93. t = ()
  94. for element in args:
  95. t = t + (self.mul(element, element),)
  96. return self.op(t)
  97. class NetForUnpackInput(nn.Cell):
  98. def __init__(self, op):
  99. super(NetForUnpackInput, self).__init__()
  100. self.op = op
  101. self.mul = P.Mul()
  102. def construct(self, x1):
  103. return self.op((self.mul(x1, x1)))
  104. class NetForFlatten(nn.Cell):
  105. def __init__(self):
  106. super(NetForFlatten, self).__init__()
  107. self.flatten = P.Flatten()
  108. def construct(self, x, y):
  109. return self.flatten(x) + y
  110. class NetForFlatten0D(nn.Cell):
  111. def __init__(self):
  112. super(NetForFlatten0D, self).__init__()
  113. self.flatten = P.Flatten()
  114. def construct(self, x):
  115. return self.flatten(x)
  116. class NetForFlattenComposed(nn.Cell):
  117. # make flatten op together with other ops for testing flatten grad
  118. def __init__(self):
  119. super(NetForFlattenComposed, self).__init__()
  120. self.flatten = P.Flatten()
  121. def construct(self, x, y):
  122. return self.flatten(x + x) + y
  123. class ArgmaxNet(nn.Cell):
  124. def __init__(self):
  125. super(ArgmaxNet, self).__init__()
  126. self.argmax = P.Argmax(axis=1)
  127. def construct(self, input_):
  128. return self.argmax(input_)
  129. class ArgminNet(nn.Cell):
  130. def __init__(self):
  131. super(ArgminNet, self).__init__()
  132. self.argmin = P.Argmin(axis=1)
  133. def construct(self, input_):
  134. return self.argmin(input_)
  135. class CumSumNet(nn.Cell):
  136. def __init__(self):
  137. super(CumSumNet, self).__init__()
  138. self.cumsum = P.CumSum()
  139. self.axis = 1
  140. def construct(self, input_):
  141. return self.cumsum(input_, self.axis)
  142. class SummaryNet(nn.Cell):
  143. def __init__(self):
  144. super(SummaryNet, self).__init__()
  145. self.s = P.ScalarSummary()
  146. self.add = P.TensorAdd()
  147. def construct(self, x, y):
  148. self.s("x1", x)
  149. return self.add(x, y)
  150. class HistogramSummaryNet(nn.Cell):
  151. def __init__(self):
  152. super(HistogramSummaryNet, self).__init__()
  153. self.summary = P.HistogramSummary()
  154. self.add = P.TensorAdd()
  155. def construct(self, x, y):
  156. out = self.add(x, y)
  157. string_in = "out"
  158. self.summary(string_in, out)
  159. return out
  160. class ScatterUpdate(nn.Cell):
  161. """ScatterUpdate net definition"""
  162. def __init__(self, ref_shape, dtype=np.float32, use_locking=False):
  163. super(ScatterUpdate, self).__init__()
  164. self.scatter_update = P.ScatterUpdate(use_locking)
  165. self.ref = Parameter(Tensor(np.ones(ref_shape, dtype)), name="ref")
  166. def construct(self, indices, updates):
  167. out = self.scatter_update(self.ref, indices, updates)
  168. return out
  169. class ScatterMax(nn.Cell):
  170. """ScatterMax net definition"""
  171. def __init__(self, dtype=np.float32, use_locking=False):
  172. super(ScatterMax, self).__init__()
  173. self.scatter_max = P.ScatterMax(use_locking)
  174. self.ref = Parameter(Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], dtype)), name="ref")
  175. def construct(self, indices, updates):
  176. out = self.scatter_max(self.ref, indices, updates)
  177. return out
  178. class ScatterMin(nn.Cell):
  179. """ScatterMin net definition"""
  180. def __init__(self, dtype=np.float32, use_locking=False):
  181. super(ScatterMin, self).__init__()
  182. self.scatter_min = P.ScatterMin(use_locking)
  183. self.ref = Parameter(Tensor(np.array([[-1.0, 2.0, 3.0], [-4.0, 1.0, 6.0]], dtype)), name="ref")
  184. def construct(self, indices, updates):
  185. out = self.scatter_min(self.ref, indices, updates)
  186. return out
  187. class ScatterAdd(nn.Cell):
  188. """ScatterAdd net definition"""
  189. def __init__(self, ref_shape, dtype=np.float32, use_locking=False):
  190. super(ScatterAdd, self).__init__()
  191. self.scatter_add = P.ScatterAdd(use_locking)
  192. self.ref = Parameter(Tensor(np.ones(ref_shape, dtype)), name="ref")
  193. def construct(self, indices, updates):
  194. out = self.scatter_add(self.ref, indices, updates)
  195. return out
  196. class ScatterNonAliasingAdd(nn.Cell):
  197. """ScatterNonAliasingAdd net definition"""
  198. def __init__(self, ref_shape, dtype=np.float32):
  199. super(ScatterNonAliasingAdd, self).__init__()
  200. self.scatter_no_aliasing_add = P.ScatterNonAliasingAdd()
  201. self.ref = Parameter(Tensor(np.ones(ref_shape, dtype)), name="ref")
  202. def construct(self, indices, updates):
  203. out = self.scatter_no_aliasing_add(self.ref, indices, updates)
  204. return out
  205. class ScatterNdSub(nn.Cell):
  206. """ScatterNdSub net definition"""
  207. def __init__(self, ref_shape, dtype=np.float32):
  208. super(ScatterNdSub, self).__init__()
  209. self.scatter_nd_sub = P.ScatterNdSub()
  210. self.ref = Parameter(Tensor(np.ones(ref_shape, dtype)), name="ref")
  211. def construct(self, indices, updates):
  212. out = self.scatter_nd_sub(self.ref, indices, updates)
  213. return out
  214. class ScatterNdAdd(nn.Cell):
  215. """ScatterNdAdd net definition"""
  216. def __init__(self, ref_shape, dtype=np.float32):
  217. super(ScatterNdAdd, self).__init__()
  218. self.scatter_nd_add = P.ScatterNdAdd()
  219. self.ref = Parameter(Tensor(np.ones(ref_shape, dtype)), name="ref")
  220. def construct(self, indices, updates):
  221. out = self.scatter_nd_add(self.ref, indices, updates)
  222. return out
  223. class ScatterSub(nn.Cell):
  224. """ScatterSub net definition"""
  225. def __init__(self, ref_shape, dtype=np.float32, use_locking=False):
  226. super(ScatterSub, self).__init__()
  227. self.scatter_sub = P.ScatterSub(use_locking)
  228. self.ref = Parameter(Tensor(np.ones(ref_shape, dtype)), name="ref")
  229. def construct(self, indices, updates):
  230. out = self.scatter_sub(self.ref, indices, updates)
  231. return out
  232. class ScatterMul(nn.Cell):
  233. """ScatterMul net definition"""
  234. def __init__(self, ref_shape, dtype=np.float32, use_locking=False):
  235. super(ScatterMul, self).__init__()
  236. self.scatter_mul = P.ScatterMul(use_locking)
  237. self.ref = Parameter(Tensor(np.ones(ref_shape, dtype)), name="ref")
  238. def construct(self, indices, updates):
  239. out = self.scatter_mul(self.ref, indices, updates)
  240. return out
  241. class ScatterDiv(nn.Cell):
  242. """ScatterDiv net definition"""
  243. def __init__(self, ref_shape, dtype=np.float32, use_locking=False):
  244. super(ScatterDiv, self).__init__()
  245. self.scatter_div = P.ScatterDiv(use_locking)
  246. self.ref = Parameter(Tensor(np.ones(ref_shape, dtype) * 10), name="ref")
  247. def construct(self, indices, updates):
  248. out = self.scatter_div(self.ref, indices, updates)
  249. return out
  250. class ApplyFtrlNet(nn.Cell):
  251. def __init__(self):
  252. super(ApplyFtrlNet, self).__init__()
  253. self.apply_ftrl = P.ApplyFtrl()
  254. self.lr = 0.001
  255. self.l1 = 0.0
  256. self.l2 = 0.0
  257. self.lr_power = -0.5
  258. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  259. self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
  260. self.linear = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="linear")
  261. def construct(self, grad):
  262. out = self.apply_ftrl(self.var, self.accum, self.linear, grad, self.lr, self.l1, self.l2, self.lr_power)
  263. return out
  264. class SparseApplyFtrlNet(nn.Cell):
  265. def __init__(self):
  266. super(SparseApplyFtrlNet, self).__init__()
  267. self.sparse_apply_ftrl = P.SparseApplyFtrl(lr=0.001, l1=0.0, l2=0.0, lr_power=-0.5)
  268. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  269. self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
  270. self.linear = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="linear")
  271. def construct(self, grad, indices):
  272. out = self.sparse_apply_ftrl(self.var, self.accum, self.linear, grad, indices)
  273. return out
  274. class SparseApplyFtrlV2Net(nn.Cell):
  275. def __init__(self):
  276. super(SparseApplyFtrlV2Net, self).__init__()
  277. self.sparse_apply_ftrl_v2 = P.SparseApplyFtrlV2(lr=0.001, l1=0.0, l2=0.0, l2_shrinkage=0.0, lr_power=-0.5)
  278. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  279. self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
  280. self.linear = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="linear")
  281. def construct(self, grad, indices):
  282. out = self.sparse_apply_ftrl_v2(self.var, self.accum, self.linear, grad, indices)
  283. return out
  284. class SparseApplyProximalAdagradNet(nn.Cell):
  285. def __init__(self):
  286. super(SparseApplyProximalAdagradNet, self).__init__()
  287. self.sparse_apply_proximal_adagrad = P.SparseApplyProximalAdagrad()
  288. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  289. self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
  290. self.lr = 0.01
  291. self.l1 = 0.0
  292. self.l2 = 0.0
  293. def construct(self, grad, indices):
  294. out = self.sparse_apply_proximal_adagrad(self.var, self.accum, self.lr, self.l1, self.l2, grad, indices)
  295. return out
  296. class ApplyProximalAdagradNet(nn.Cell):
  297. def __init__(self):
  298. super(ApplyProximalAdagradNet, self).__init__()
  299. self.apply_proximal_adagrad = P.ApplyProximalAdagrad()
  300. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  301. self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
  302. self.lr = 0.01
  303. self.l1 = 0.0
  304. self.l2 = 0.0
  305. def construct(self, grad):
  306. out = self.apply_proximal_adagrad(self.var, self.accum, self.lr, self.l1, self.l2, grad)
  307. return out
  308. class ApplyAdaMaxNet(nn.Cell):
  309. def __init__(self):
  310. super(ApplyAdaMaxNet, self).__init__()
  311. self.apply_ada_max = P.ApplyAdaMax()
  312. self.beta1_power = 0.9
  313. self.lr = 0.001
  314. self.beta1 = 0.9
  315. self.beta2 = 0.99
  316. self.epsilon = 1e-10
  317. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  318. self.m = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="m")
  319. self.v = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="v")
  320. def construct(self, grad):
  321. out = self.apply_ada_max(self.var, self.m, self.v, self.beta1_power, self.lr,
  322. self.beta1, self.beta2, self.epsilon, grad)
  323. return out
  324. class ApplyAdadeltaNet(nn.Cell):
  325. def __init__(self):
  326. super(ApplyAdadeltaNet, self).__init__()
  327. self.apply_adadelta = P.ApplyAdadelta()
  328. self.lr = 0.001
  329. self.rho = 0.0
  330. self.epsilon = 1e-6
  331. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  332. self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
  333. self.accum_update = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum_update")
  334. def construct(self, grad):
  335. out = self.apply_adadelta(self.var, self.accum, self.accum_update, self.lr, self.rho, self.epsilon, grad)
  336. return out
  337. class ApplyAdagradNet(nn.Cell):
  338. def __init__(self):
  339. super(ApplyAdagradNet, self).__init__()
  340. self.apply_adagrad = P.ApplyAdagrad()
  341. self.lr = 0.001
  342. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  343. self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
  344. def construct(self, grad):
  345. out = self.apply_adagrad(self.var, self.accum, self.lr, grad)
  346. return out
  347. class ApplyAdagradV2Net(nn.Cell):
  348. def __init__(self):
  349. super(ApplyAdagradV2Net, self).__init__()
  350. self.apply_adagrad_v2 = P.ApplyAdagradV2(epsilon=1e-6)
  351. self.lr = 0.001
  352. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  353. self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
  354. def construct(self, grad):
  355. out = self.apply_adagrad_v2(self.var, self.accum, self.lr, grad)
  356. return out
  357. class ApplyAddSignNet(nn.Cell):
  358. def __init__(self):
  359. super(ApplyAddSignNet, self).__init__()
  360. self.apply_add_sign = P.ApplyAddSign()
  361. self.lr = 0.001
  362. self.alpha = 1.0
  363. self.sign_decay = 0.99
  364. self.beta = 0.99
  365. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  366. self.m = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="m")
  367. def construct(self, grad):
  368. out = self.apply_add_sign(self.var, self.m, self.lr, self.alpha, self.sign_decay, self.beta, grad)
  369. return out
  370. class ApplyPowerSignNet(nn.Cell):
  371. def __init__(self):
  372. super(ApplyPowerSignNet, self).__init__()
  373. self.apply_power_sign = P.ApplyPowerSign()
  374. self.lr = 0.001
  375. self.logbase = np.e
  376. self.sign_decay = 0.99
  377. self.beta = 0.99
  378. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  379. self.m = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="m")
  380. def construct(self, grad):
  381. out = self.apply_power_sign(self.var, self.m, self.lr, self.logbase, self.sign_decay, self.beta, grad)
  382. return out
  383. class ApplyGradientDescentNet(nn.Cell):
  384. def __init__(self):
  385. super(ApplyGradientDescentNet, self).__init__()
  386. self.apply_gradient_descent = P.ApplyGradientDescent()
  387. self.alpha = 0.001
  388. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  389. def construct(self, delta):
  390. out = self.apply_gradient_descent(self.var, self.alpha, delta)
  391. return out
  392. class ApplyProximalGradientDescentNet(nn.Cell):
  393. def __init__(self):
  394. super(ApplyProximalGradientDescentNet, self).__init__()
  395. self.apply_proximal_gradient_descent = P.ApplyProximalGradientDescent()
  396. self.alpha = 0.001
  397. self.l1 = 0.0
  398. self.l2 = 0.0
  399. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  400. def construct(self, delta):
  401. out = self.apply_proximal_gradient_descent(self.var, self.alpha, self.l1, self.l2, delta)
  402. return out
  403. class SparseApplyAdagradNet(nn.Cell):
  404. def __init__(self):
  405. super(SparseApplyAdagradNet, self).__init__()
  406. self.sparse_apply_adagrad = P.SparseApplyAdagrad(lr=0.01)
  407. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  408. self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
  409. def construct(self, grad, indices):
  410. out = self.sparse_apply_adagrad(self.var, self.accum, grad, indices)
  411. return out
  412. class SparseApplyAdagradV2Net(nn.Cell):
  413. def __init__(self):
  414. super(SparseApplyAdagradV2Net, self).__init__()
  415. self.sparse_apply_adagrad_v2 = P.SparseApplyAdagradV2(lr=0.01, epsilon=0.001)
  416. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  417. self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
  418. def construct(self, grad, indices):
  419. out = self.sparse_apply_adagrad_v2(self.var, self.accum, grad, indices)
  420. return out
  421. class ApplyRMSNet(nn.Cell):
  422. def __init__(self):
  423. super(ApplyRMSNet, self).__init__()
  424. self.apply_rms = P.ApplyRMSProp()
  425. self.lr = 0.001
  426. self.rho = 0.0
  427. self.momentum = 0.0
  428. self.epsilon = 1e-10
  429. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  430. self.ms = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="ms")
  431. self.moment = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="moment")
  432. def construct(self, grad):
  433. out = self.apply_rms(self.var, self.ms, self.moment, self.lr, grad, self.rho, self.momentum, self.epsilon)
  434. return out
  435. class InplaceAddNet(nn.Cell):
  436. def __init__(self):
  437. super(InplaceAddNet, self).__init__()
  438. self.inplace_add = P.InplaceAdd(indices=(0, 1))
  439. def construct(self, x, v):
  440. out = self.inplace_add(x, v)
  441. return out
  442. class InplaceSubNet(nn.Cell):
  443. def __init__(self):
  444. super(InplaceSubNet, self).__init__()
  445. self.inplace_sub = P.InplaceSub(indices=(0, 1))
  446. def construct(self, x, v):
  447. out = self.inplace_sub(x, v)
  448. return out
  449. class NormalNet(nn.Cell):
  450. def __init__(self, shape=None, seed=0):
  451. super(NormalNet, self).__init__()
  452. self.shape = shape
  453. self.seed = seed
  454. def construct(self, mean, stddev):
  455. out = C.normal(self.shape, mean, stddev, self.seed)
  456. return out
  457. class LaplaceNet(nn.Cell):
  458. def __init__(self, shape=None, seed=0):
  459. super(LaplaceNet, self).__init__()
  460. self.shape = shape
  461. self.seed = seed
  462. def construct(self, mean, lambda_param):
  463. out = C.laplace(self.shape, mean, lambda_param, self.seed)
  464. return out
  465. class GammaNet(nn.Cell):
  466. def __init__(self, shape=None, seed=0):
  467. super(GammaNet, self).__init__()
  468. self.shape = shape
  469. self.seed = seed
  470. def construct(self, alpha, beta):
  471. out = C.gamma(self.shape, alpha, beta, self.seed)
  472. return out
  473. class PoissonNet(nn.Cell):
  474. def __init__(self, shape=None, seed=0):
  475. super(PoissonNet, self).__init__()
  476. self.shape = shape
  477. self.seed = seed
  478. def construct(self, mean):
  479. out = C.poisson(self.shape, mean, self.seed)
  480. return out
  481. class UniformNet(nn.Cell):
  482. def __init__(self, shape=None, seed=0):
  483. super(UniformNet, self).__init__()
  484. self.shape = shape
  485. self.seed = seed
  486. def construct(self, a, b):
  487. out = C.uniform(self.shape, a, b, self.seed)
  488. return out
  489. class CTCGreedyDecoderNet(nn.Cell):
  490. def __init__(self):
  491. super(CTCGreedyDecoderNet, self).__init__()
  492. self.ctc_greedy_decoder = P.CTCGreedyDecoder()
  493. self.assert_op = P.Assert(300)
  494. def construct(self, inputs, sequence_length):
  495. out = self.ctc_greedy_decoder(inputs, sequence_length)
  496. self.assert_op(True, (out[0], out[1], out[2], out[3]))
  497. return out[2]
  498. class StridedSliceNet(nn.Cell):
  499. def __init__(self):
  500. super(StridedSliceNet, self).__init__()
  501. self.begins = (1, 2, 3, 2, 1)
  502. self.ends = (5, 6, 7, 8, 9)
  503. self.strides = (1, 2, 3, 2, 1)
  504. self.strided_slice_0 = P.StridedSlice(begin_mask=3, end_mask=5, ellipsis_mask=4,
  505. shrink_axis_mask=2, new_axis_mask=8)
  506. self.strided_slice_1 = P.StridedSlice(begin_mask=5, end_mask=2, ellipsis_mask=2,
  507. shrink_axis_mask=6, new_axis_mask=10)
  508. self.strided_slice_2 = P.StridedSlice(begin_mask=3, end_mask=3, ellipsis_mask=4,
  509. shrink_axis_mask=5, new_axis_mask=13)
  510. self.strided_slice_3 = P.StridedSlice(begin_mask=0, end_mask=0, ellipsis_mask=4,
  511. shrink_axis_mask=12, new_axis_mask=15)
  512. self.const_0 = Tensor(np.ones([6, 8, 9, 1, 8], np.float32))
  513. self.const_1 = Tensor(np.ones([5, 7, 8, 1, 8], np.float32))
  514. self.const_2 = Tensor(np.ones([1, 3, 7, 8, 9, 1, 8], np.float32))
  515. self.const_3 = Tensor(np.ones([1, 1, 6, 7, 8, 9, 1, 8], np.float32))
  516. def construct(self, x):
  517. out_0 = self.strided_slice_0(x, self.begins, self.ends, self.strides) + self.const_0
  518. out_1 = self.strided_slice_1(x, self.begins, self.ends, self.strides) + self.const_1
  519. out_2 = self.strided_slice_2(x, self.begins, self.ends, self.strides) + self.const_2
  520. out_3 = self.strided_slice_3(x, self.begins, self.ends, self.strides) + self.const_3
  521. return out_0, out_1, out_2, out_3
  522. def test_strided_slice_const():
  523. class StridedSLiceConstNet(nn.Cell):
  524. """StridedSLiceConstNet net definition"""
  525. def __init__(self):
  526. super(StridedSLiceConstNet, self).__init__()
  527. self.begins = (0, 2, -5, 2, 1)
  528. self.ends = (0, 6, 9, 8, 9)
  529. self.strides = (1, 2, 1, 2, 1)
  530. self.strided_slice = P.StridedSlice(begin_mask=2,
  531. end_mask=6,
  532. ellipsis_mask=4,
  533. shrink_axis_mask=6,
  534. new_axis_mask=18)
  535. def construct(self, x):
  536. out = self.strided_slice(x, self.begins, self.ends, self.strides)
  537. return out
  538. net = StridedSLiceConstNet()
  539. context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
  540. x = Tensor(np.ones([6, 7, 8, 9, 10]), mstype.float32)
  541. ret = net(x)
  542. assert ret.shape == (0, 1, 7, 8, 9, 3, 1)
  543. assert (ret.asnumpy() == np.array([], np.float32).reshape([0, 1, 7, 8, 9, 3, 1])).all()
  544. class ParallelConcatNet(nn.Cell):
  545. def __init__(self):
  546. super(ParallelConcatNet, self).__init__()
  547. self.parallel_concat = P.ParallelConcat()
  548. def construct(self, x1, x2):
  549. return self.parallel_concat((x1, x2))
  550. class BasicLSTMCellNet(nn.Cell):
  551. """ BasicLSTMCellNet definition """
  552. def __init__(self):
  553. super(BasicLSTMCellNet, self).__init__()
  554. self.lstm = P.BasicLSTMCell()
  555. def construct(self, x, h, c, w, b):
  556. return self.lstm(x, h, c, w, b)
  557. class EditDistance(nn.Cell):
  558. def __init__(self, hypothesis_shape, truth_shape, normalize=True):
  559. super(EditDistance, self).__init__()
  560. self.edit_distance = P.EditDistance(normalize)
  561. self.hypothesis_shape = hypothesis_shape
  562. self.truth_shape = truth_shape
  563. def construct(self, hypothesis_indices, hypothesis_values, truth_indices, truth_values):
  564. return self.edit_distance(hypothesis_indices, hypothesis_values, self.hypothesis_shape,
  565. truth_indices, truth_values, self.truth_shape)
  566. test_case_math_ops = [
  567. ('BitwiseAnd', {
  568. 'block': P.BitwiseAnd(),
  569. 'desc_inputs': [Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mstype.int16),
  570. Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mstype.int16)],
  571. 'skip': ['backward']}),
  572. ('BitwiseAnd_1', {
  573. 'block': P.BitwiseAnd(),
  574. 'desc_inputs': [Tensor(np.array([[1, 2, 3], [-1, -2, -3]]), mstype.int16),
  575. Tensor(np.array([1, 1, 1]), mstype.int16)],
  576. 'skip': ['backward']}),
  577. ('BitwiseOr', {
  578. 'block': P.BitwiseOr(),
  579. 'desc_inputs': [Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mstype.int16),
  580. Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mstype.int16)],
  581. 'skip': ['backward']}),
  582. ('BitwiseOr_1', {
  583. 'block': P.BitwiseOr(),
  584. 'desc_inputs': [Tensor(np.array([[1, 2, 3], [-1, -2, -3]]), mstype.int16),
  585. Tensor(np.array([1, 1, 1]), mstype.int16)],
  586. 'skip': ['backward']}),
  587. ('BitwiseXor', {
  588. 'block': P.BitwiseXor(),
  589. 'desc_inputs': [Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mstype.int16),
  590. Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mstype.int16)],
  591. 'skip': ['backward']}),
  592. ('BitwiseXor_1', {
  593. 'block': P.BitwiseXor(),
  594. 'desc_inputs': [Tensor(np.array([[1, 2, 3], [-1, -2, -3]]), mstype.int16),
  595. Tensor(np.array([1, 1, 1]), mstype.int16)],
  596. 'skip': ['backward']}),
  597. ('Neg', {
  598. 'block': P.Neg(),
  599. 'desc_inputs': [[1, 3, 4, 4]],
  600. 'desc_bprop': [[1, 3, 4, 4]]}),
  601. ('Sub', {
  602. 'block': P.Sub(),
  603. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  604. 'desc_bprop': [[2, 3, 3, 5]]}),
  605. ('TensorAdd', {
  606. 'block': P.TensorAdd(),
  607. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  608. 'desc_bprop': [[2, 3, 3, 5]]}),
  609. ('Mul0', {
  610. 'block': P.Mul(),
  611. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  612. 'desc_bprop': [[2, 3, 3, 5]]}),
  613. ('Mul1', {
  614. 'block': P.Mul(),
  615. 'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
  616. 'desc_bprop': [[2, 3, 3, 5]]}),
  617. ('Mul2', {
  618. 'block': P.Mul(),
  619. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
  620. 'desc_bprop': [[2, 3, 3, 5]],
  621. 'skip': ['backward']}),
  622. ('Mul3', {
  623. 'block': P.Mul(),
  624. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  625. 'desc_bprop': [[2, 3, 3, 5]],
  626. 'skip': ['backward']}),
  627. ('Mul4', {
  628. 'block': P.Mul(),
  629. 'desc_inputs': [[2, 3, 3, 5], [3, 5]],
  630. 'desc_bprop': [[2, 3, 3, 5]],
  631. 'skip': ['backward']}),
  632. ('Add0', {
  633. 'block': P.TensorAdd(),
  634. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  635. 'desc_bprop': [[2, 3, 3, 5]]}),
  636. ('Add1', {
  637. 'block': P.TensorAdd(),
  638. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  639. 'desc_bprop': [[2, 3, 3, 5]],
  640. 'skip': ['backward']}),
  641. ('Add2', {
  642. 'block': P.TensorAdd(),
  643. 'desc_inputs': [[2, 3, 3, 5], [3, 5]],
  644. 'desc_bprop': [[2, 3, 3, 5]],
  645. 'skip': ['backward']}),
  646. ('Add3', {
  647. 'block': P.TensorAdd(),
  648. 'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
  649. 'desc_bprop': [[2, 3, 3, 5]],
  650. 'skip': ['backward']}),
  651. ('Add4', {
  652. 'block': P.TensorAdd(),
  653. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
  654. 'desc_bprop': [[2, 3, 3, 5]],
  655. 'skip': ['backward']}),
  656. ('Minimum', {
  657. 'block': P.Minimum(),
  658. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  659. 'desc_bprop': [[2, 3, 3, 5]]}),
  660. ('Pow_0', {
  661. 'block': P.Pow(),
  662. 'desc_const': [2.0],
  663. 'desc_inputs': [[2, 3, 3, 5]],
  664. 'desc_bprop': [[2, 3, 3, 5]]}),
  665. ('Pow_1', {
  666. 'block': P.Pow(),
  667. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  668. 'desc_bprop': [[2, 3, 3, 5]]}),
  669. ('Exp', {
  670. 'block': P.Exp(),
  671. 'desc_inputs': [[2, 3]],
  672. 'desc_bprop': [[2, 3]]}),
  673. ('Expm1', {
  674. 'block': P.Expm1(),
  675. 'desc_inputs': [[2, 3]],
  676. 'desc_bprop': [[2, 3]]}),
  677. ('Erf', {
  678. 'block': P.Erf(),
  679. 'desc_inputs': [Tensor(np.array([-2, -1, 0, 1, 2]).astype(np.float16))],
  680. 'desc_bprop': [Tensor(np.array([-2, -1, 0, 1, 2]).astype(np.float16))]}),
  681. ('Floor', {
  682. 'block': P.Floor(),
  683. 'desc_inputs': [[2, 512, 56, 56]],
  684. 'desc_bprop': [[2, 512, 56, 56]],
  685. 'skip': ['backward']}),
  686. ('Ceil', {
  687. 'block': P.Ceil(),
  688. 'desc_inputs': [[2, 512, 56, 56]],
  689. 'desc_bprop': [[2, 512, 56, 56]],
  690. 'skip': ['backward']}),
  691. ('InplaceAdd', {
  692. 'block': InplaceAddNet(),
  693. 'desc_inputs': [Tensor(np.array([[1, 2], [3, 4], [5, 6]]).astype(np.float32)),
  694. Tensor(np.array([[0.5, 1], [1, 1.5]]).astype(np.float32))],
  695. 'skip': ['backward']}),
  696. ('InplaceSub', {
  697. 'block': InplaceSubNet(),
  698. 'desc_inputs': [Tensor(np.array([[1, 2], [3, 4], [5, 6]]).astype(np.float32)),
  699. Tensor(np.array([[0.5, 1], [1, 1.5]]).astype(np.float32))],
  700. 'skip': ['backward']}),
  701. ('ACos', {
  702. 'block': P.ACos(),
  703. 'desc_inputs': [Tensor(np.array([2., 3.]).astype(np.float32))],
  704. 'desc_bprop': [Tensor(np.array([2., 3.]).astype(np.float32))]}),
  705. ('ACosGrad', {
  706. 'block': G.ACosGrad(),
  707. 'desc_inputs': [[2, 3], [2, 3]],
  708. 'skip': ['backward']}),
  709. ('Acosh', {
  710. 'block': P.Acosh(),
  711. 'desc_inputs': [Tensor(np.array([2., 3.]).astype(np.float32))],
  712. 'desc_bprop': [Tensor(np.array([2., 3.]).astype(np.float32))]}),
  713. ('AcoshGrad', {
  714. 'block': G.AcoshGrad(),
  715. 'desc_inputs': [[2, 3], [2, 3]],
  716. 'skip': ['backward']}),
  717. ('Sin', {
  718. 'block': P.Sin(),
  719. 'desc_inputs': [[2, 3]],
  720. 'desc_bprop': [[2, 3]]}),
  721. ('Asin', {
  722. 'block': P.Asin(),
  723. 'desc_inputs': [[2, 3]],
  724. 'desc_bprop': [[2, 3]]}),
  725. ('Asinh', {
  726. 'block': P.Asinh(),
  727. 'desc_inputs': [[3, 4, 5]],
  728. 'desc_bprop': [[3, 4, 5]]}),
  729. ('Tan', {
  730. 'block': P.Tan(),
  731. 'desc_inputs': [[2, 3]],
  732. 'desc_bprop': [[2, 3]]}),
  733. ('Reciprocal', {
  734. 'block': P.Reciprocal(),
  735. 'desc_inputs': [[2, 3, 3, 5]],
  736. 'desc_bprop': [[2, 3, 3, 5]]}),
  737. ('Minimum_0', {
  738. 'block': P.Minimum(),
  739. 'desc_inputs': [[2, 3, 3, 5], [3, 3, 5]],
  740. 'desc_bprop': [[2, 3, 3, 5]]}),
  741. ('Maximum', {
  742. 'block': P.Maximum(),
  743. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  744. 'desc_bprop': [[2, 3, 3, 5]]}),
  745. ('Maximum_0', {
  746. 'block': P.Maximum(),
  747. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  748. 'desc_bprop': [[2, 3, 3, 5]]}),
  749. ('MaximumGrad', {
  750. 'block': G.MaximumGrad(),
  751. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
  752. 'skip': ['backward']}),
  753. ('MinimumGrad', {
  754. 'block': G.MinimumGrad(),
  755. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
  756. 'skip': ['backward']}),
  757. ('StridedSlice_00', {
  758. 'block': P.StridedSlice(shrink_axis_mask=0),
  759. 'desc_const': [(0, 1, 2, 1),
  760. (2, 3, 3, 4),
  761. (1, 1, 1, 2)],
  762. 'desc_inputs': [[2, 3, 3, 5]],
  763. 'desc_bprop': [[2, 2, 1, 3]],
  764. 'skip': ['backward']}),
  765. ('Slice_1', {
  766. 'block': P.Slice(),
  767. 'desc_const': [(0, 1, 2, 1),
  768. (1, 1, 1, 2)],
  769. 'desc_inputs': [[2, 3, 3, 5]],
  770. 'desc_bprop': [[1, 1, 1, 2]]}),
  771. ('StridedSliceGrad', {
  772. 'block': G.StridedSliceGrad(),
  773. 'desc_const': [(64, 1, 1024),
  774. (0, 1, 0),
  775. (64, 2, 1024),
  776. (1, 1, 1)],
  777. 'desc_inputs': [[64, 128, 1024]],
  778. 'skip': ['backward']}),
  779. ('Normal', {
  780. 'block': NormalNet((3, 2, 4), 0),
  781. 'desc_inputs': [Tensor(0.0, mstype.float32), Tensor(1.0, mstype.float32)],
  782. 'skip': ['backward']}),
  783. ('Laplace', {
  784. 'block': LaplaceNet((3, 2, 4), 0),
  785. 'desc_inputs': [Tensor(1.0, mstype.float32), Tensor(1.0, mstype.float32)],
  786. 'skip': ['backward']}),
  787. ('Gamma', {
  788. 'block': GammaNet((3, 2, 4), 0),
  789. 'desc_inputs': [Tensor(1.0, mstype.float32), Tensor(1.0, mstype.float32)],
  790. 'skip': ['backward']}),
  791. ('Poisson', {
  792. 'block': PoissonNet((3, 2, 4), 0),
  793. 'desc_inputs': [Tensor(2.0, mstype.float32)],
  794. 'skip': ['backward']}),
  795. ('Uniform', {
  796. 'block': UniformNet((3, 2, 4), 0),
  797. 'desc_inputs': [Tensor(0.0, mstype.float32), Tensor(1.0, mstype.float32)],
  798. 'skip': ['backward']}),
  799. ('RandomChoiceWithMask', {
  800. 'block': P.RandomChoiceWithMask(256),
  801. 'desc_inputs': [Tensor(np.random.rand(24000, 4).astype(np.bool_))],
  802. 'desc_bprop': [[256, 4], [256, 4]],
  803. 'skip': ['backward']}),
  804. ('LessEqual', {
  805. 'block': P.LessEqual(),
  806. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  807. Tensor(np.random.rand(4).astype(np.float16))],
  808. 'skip': ['backward']}),
  809. ('Less', {
  810. 'block': P.Less(),
  811. 'desc_inputs': [[2, 1, 4, 5], [2, 1, 4, 5]],
  812. 'desc_bprop': [Tensor(np.zeros((2, 1, 4, 5), np.bool_))],
  813. 'skip': ['backward']}),
  814. ('RealDiv_0', {
  815. 'block': P.RealDiv(),
  816. 'desc_const': [Tensor(2048.0), Tensor(0.0)],
  817. 'desc_inputs': [],
  818. 'skip': ['backward']}),
  819. ('RealDiv', {
  820. 'block': P.RealDiv(),
  821. 'desc_inputs': [[4], Tensor(np.ones(4).astype(np.float32))],
  822. 'desc_bprop': [[4]]}),
  823. ('RealDiv_1', {
  824. 'block': P.RealDiv(),
  825. 'desc_inputs': [[512, 1024], [512, 1024]],
  826. 'desc_bprop': [[512, 1024]]}),
  827. ('FloorDiv', {
  828. 'block': P.FloorDiv(),
  829. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  830. Tensor(np.random.rand(4).astype(np.float16))],
  831. 'skip': ['backward']}),
  832. ('FloorMod', {
  833. 'block': P.FloorMod(),
  834. 'desc_inputs': [[3, 4, 5], [2, 3, 4, 5]],
  835. 'desc_bprop': [[2, 3, 4, 5]]}),
  836. ('TruncateDiv', {
  837. 'block': P.TruncateDiv(),
  838. 'desc_inputs': [[3, 4, 5], [2, 3, 4, 5]],
  839. 'desc_bprop': [[2, 3, 4, 5]]}),
  840. ('TruncateMod', {
  841. 'block': P.TruncateMod(),
  842. 'desc_inputs': [[3, 4, 5], [2, 3, 4, 5]],
  843. 'desc_bprop': [[2, 3, 4, 5]]}),
  844. ('identity', {
  845. 'block': ops.functional.identity,
  846. 'desc_inputs': [[2, 2]],
  847. 'skip': ['backward']}),
  848. ('MatMul_1', {
  849. 'block': P.MatMul(transpose_a=False, transpose_b=False),
  850. 'desc_inputs': [[1024, 160], [160, 1024]],
  851. 'desc_bprop': [[1024, 1024]]}),
  852. ('MatMul_2', {
  853. 'block': P.MatMul(transpose_a=True, transpose_b=True),
  854. 'desc_inputs': [[160, 1024], [1024, 160]],
  855. 'desc_bprop': [[1024, 1024]]}),
  856. ('Sub', {
  857. 'block': P.Sub(),
  858. 'desc_inputs': [[3], [3]],
  859. 'desc_bprop': [[3]]}),
  860. ('TruncatedNormal', {
  861. 'block': P.TruncatedNormal(),
  862. 'desc_const': [(1, 2, 3)],
  863. 'desc_inputs': [],
  864. 'skip': ['backward'],
  865. 'add_fake_input': True}),
  866. ('Select', {
  867. 'block': P.Select(),
  868. 'desc_inputs': [Tensor(np.array([[True, False, False], [False, True, True]])),
  869. [2, 3], [2, 3]],
  870. 'desc_bprop': [[2, 3]]}),
  871. ('FakeQuantWithMinMaxVars', {
  872. 'block': FakeQuantWithMinMaxVars(num_bits=8, narrow_range=False),
  873. 'desc_inputs': [Tensor(np.random.rand(3, 16, 5, 5), mstype.float32),
  874. Tensor(np.array([-6]), mstype.float32),
  875. Tensor(np.array([6]), mstype.float32)],
  876. 'desc_bprop': [Tensor(np.random.rand(3, 16, 5, 5), mstype.float32)]}),
  877. ('FakeQuantWithMinMaxVarsPerChannel', {
  878. 'block': FakeQuantWithMinMaxVarsPerChannel(num_bits=8, narrow_range=False),
  879. 'desc_inputs': [Tensor(np.random.rand(3, 16, 5, 4), mstype.float32),
  880. Tensor(np.array([-6, -1, -2, -3]), mstype.float32),
  881. Tensor(np.array([6, 1, 2, 3]), mstype.float32)],
  882. 'desc_bprop': [Tensor(np.random.rand(3, 16, 5, 4), mstype.float32)]}),
  883. ('Rank', {
  884. 'block': P.Rank(),
  885. 'desc_inputs': [[2, 3]],
  886. 'skip': ['backward']}),
  887. ('InvertPermutation', {
  888. 'block': P.InvertPermutation(),
  889. 'desc_const': [(0, 3, 1, 2)],
  890. 'desc_inputs': [],
  891. 'skip': ['backward']}),
  892. ('Xdivy', {
  893. 'block': P.Xdivy(),
  894. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  895. 'desc_bprop': [[2, 3, 4, 5]]}),
  896. ('Xlogy', {
  897. 'block': P.Xlogy(),
  898. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  899. 'desc_bprop': [[2, 3, 4, 5]]}),
  900. ('SquaredDifference', {
  901. 'block': P.SquaredDifference(),
  902. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  903. 'desc_bprop': [[2, 3, 4, 5]]}),
  904. ('Square', {
  905. 'block': P.Square(),
  906. 'desc_inputs': [[4]],
  907. 'desc_bprop': [[4]]}),
  908. ('Rsqrt', {
  909. 'block': P.Rsqrt(),
  910. 'desc_inputs': [[4]],
  911. 'desc_bprop': [[4]]}),
  912. ('Sqrt', {
  913. 'block': P.Sqrt(),
  914. 'desc_inputs': [[4]],
  915. 'desc_bprop': [[4]]}),
  916. ('RealDiv', {
  917. 'block': P.RealDiv(),
  918. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  919. 'desc_bprop': [[2, 3, 4, 5]]}),
  920. ('Div', {
  921. 'block': P.Div(),
  922. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  923. 'desc_bprop': [[2, 3, 4, 5]]}),
  924. ('Equal', {
  925. 'block': P.Equal(),
  926. 'desc_inputs': [[3, 4, 5], [4, 5]],
  927. 'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
  928. ('NotEqual', {
  929. 'block': P.NotEqual(),
  930. 'desc_inputs': [[4, 1], [2, 3, 4, 5]],
  931. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  932. ('NotEqual_0', {
  933. 'block': P.NotEqual(),
  934. 'desc_inputs': [Tensor(np.array(1).astype(np.int32)), [2, 3, 4, 5]],
  935. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))],
  936. 'skip': ['backward']}),
  937. ('ApproximateEqual', {
  938. 'block': P.ApproximateEqual(),
  939. 'desc_inputs': [[3, 4, 5], [3, 4, 5]],
  940. 'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
  941. ('Greater', {
  942. 'block': P.Greater(),
  943. 'desc_inputs': [[2, 3, 4, 1], [4, 5]],
  944. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  945. ('GreaterEqual', {
  946. 'block': P.GreaterEqual(),
  947. 'desc_inputs': [[2, 3, 4, 1], [4, 5]],
  948. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  949. ('LogicalNot', {
  950. 'block': P.LogicalNot(),
  951. 'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_))],
  952. 'desc_bprop': [Tensor(np.ones((3, 4, 5), np.bool_))]}),
  953. ('LogicalAnd', {
  954. 'block': P.LogicalAnd(),
  955. 'desc_inputs': [Tensor(np.zeros((2, 3, 4), np.bool_)), Tensor(np.ones((1), np.bool_))],
  956. 'desc_bprop': [Tensor(np.zeros((2, 3, 4), np.bool_))]}),
  957. ('LogicalOr', {
  958. 'block': P.LogicalOr(),
  959. 'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_)), Tensor(np.ones((3, 1, 1), np.bool_))],
  960. 'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
  961. ('NpuAllocFloatStatus', {
  962. 'block': P.NPUAllocFloatStatus(),
  963. 'desc_inputs': [],
  964. 'add_fack_input': True,
  965. 'fack_input_type': np.float32,
  966. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  967. 'skip': ['backward']}),
  968. ('NpuGetFloatStatus', {
  969. 'block': P.NPUGetFloatStatus(),
  970. 'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
  971. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  972. 'skip': ['backward']}),
  973. ('NpuClearFloatStatus', {
  974. 'block': P.NPUClearFloatStatus(),
  975. 'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
  976. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  977. 'skip': ['backward']}),
  978. ('CheckValid', {
  979. 'block': P.CheckValid(),
  980. 'desc_inputs': [[20000, 4], [3]],
  981. 'desc_bprop': [[20000]],
  982. 'skip': ['backward']}),
  983. ('NMSWithMask', {
  984. 'block': P.NMSWithMask(0.5),
  985. 'desc_inputs': [[128, 5]],
  986. 'desc_bprop': [[128, 5], [128], [128]],
  987. 'skip': ['backward']}),
  988. ('Abs', {
  989. 'block': P.Abs(),
  990. 'desc_inputs': [[4]],
  991. 'desc_bprop': [[4]]}),
  992. ('CumSum', {
  993. 'block': CumSumNet(),
  994. 'desc_inputs': [Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7], [1, 3, 7, 9]]).astype(np.float32))],
  995. 'desc_bprop': [Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7],
  996. [1, 3, 7, 9]]).astype(np.float32))]}),
  997. ('ReduceSum_3', {
  998. 'block': P.ReduceSum(),
  999. 'desc_const': [0],
  1000. 'desc_inputs': [[3, 2]],
  1001. 'desc_bprop': [[2]]}),
  1002. ('ReduceSum_4', {
  1003. 'block': P.ReduceSum(keep_dims=True),
  1004. 'desc_const': [0],
  1005. 'desc_inputs': [[3, 2]],
  1006. 'desc_bprop': [[1, 2]]}),
  1007. ('ReduceSum_5', {
  1008. 'block': P.ReduceSum(keep_dims=True),
  1009. 'desc_inputs': [[2, 3, 4]],
  1010. 'desc_bprop': [[1, 1, 1]]}),
  1011. ('ReduceSum_6', {
  1012. 'block': P.ReduceSum(),
  1013. 'desc_inputs': [[2, 3, 4]],
  1014. 'desc_bprop': [[1]]}),
  1015. ('Sum_0', {
  1016. 'block': P.ReduceSum(),
  1017. 'desc_const': [(1,)],
  1018. 'desc_inputs': [[3, 2]],
  1019. 'desc_bprop': [[3]]}),
  1020. ('Sum_1', {
  1021. 'block': P.ReduceSum(keep_dims=True),
  1022. 'desc_const': [(1,)],
  1023. 'desc_inputs': [[3, 2]],
  1024. 'desc_bprop': [[3, 1]]}),
  1025. ('Sum_2', {
  1026. 'block': P.ReduceSum(),
  1027. 'desc_const': [(0, 1)],
  1028. 'desc_inputs': [[3, 2]],
  1029. 'desc_bprop': [[1]]}),
  1030. ('Sum_3', {
  1031. 'block': P.ReduceSum(),
  1032. 'desc_const': [0],
  1033. 'desc_inputs': [[3, 2]],
  1034. 'desc_bprop': [[2]]}),
  1035. ('Sum_4', {
  1036. 'block': P.ReduceSum(keep_dims=True),
  1037. 'desc_const': [0],
  1038. 'desc_inputs': [[3, 2]],
  1039. 'desc_bprop': [[1, 2]]}),
  1040. ('Sum_5', {
  1041. 'block': P.ReduceSum(keep_dims=True),
  1042. 'desc_const': [()],
  1043. 'desc_inputs': [[2, 3, 4]],
  1044. 'desc_bprop': [[1, 1, 1]]}),
  1045. ('Sum_6', {
  1046. 'block': P.ReduceSum(),
  1047. 'desc_const': [()],
  1048. 'desc_inputs': [[2, 3, 4]],
  1049. 'desc_bprop': [[1]]}),
  1050. ('Sign', {
  1051. 'block': P.Sign(),
  1052. 'desc_inputs': [[3]],
  1053. 'desc_bprop': [[3]]}),
  1054. ('Round', {
  1055. 'block': P.Round(),
  1056. 'desc_inputs': [[3]],
  1057. 'desc_bprop': [[3]]}),
  1058. ('Atan2', {
  1059. 'block': P.Atan2(),
  1060. 'desc_inputs': [Tensor(np.array([0, 1]).astype(np.float32)),
  1061. Tensor(np.array([1, 1]).astype(np.float32))],
  1062. 'desc_bprop': [[2]]}),
  1063. ('SquareSumAll', {
  1064. 'block': P.SquareSumAll(),
  1065. 'desc_inputs': [Tensor(np.array([0, 1, 4, 5]).astype(np.float32)),
  1066. Tensor(np.array([1, 1, 3, 7]).astype(np.float32))],
  1067. 'desc_bprop': [Tensor(np.array(0.1).astype(np.float32)),
  1068. Tensor(np.array(0.1).astype(np.float32))]}),
  1069. ('Cos', {
  1070. 'block': P.Cos(),
  1071. 'desc_inputs': [[2, 3]],
  1072. 'desc_bprop': [[2, 3]]}),
  1073. ('ReduceAll', {
  1074. 'block': P.ReduceAll(),
  1075. 'desc_const': [1],
  1076. 'desc_inputs': [Tensor(np.array([[True, False], [True, True]]))],
  1077. 'desc_bprop': []}),
  1078. ('ReduceAny', {
  1079. 'block': P.ReduceAny(),
  1080. 'desc_const': [1],
  1081. 'desc_inputs': [Tensor(np.array([[True, False], [True, True]]))],
  1082. 'desc_bprop': []}),
  1083. ('BesselI0e', {
  1084. 'block': P.BesselI0e(),
  1085. 'desc_inputs': [[2, 3]],
  1086. 'desc_bprop': [[2, 3]]}),
  1087. ('BesselI1e', {
  1088. 'block': P.BesselI1e(),
  1089. 'desc_inputs': [[2, 3]],
  1090. 'desc_bprop': [[2, 3]]}),
  1091. ('Atan', {
  1092. 'block': P.Atan(),
  1093. 'desc_inputs': [[2, 3]],
  1094. 'desc_bprop': [[2, 3]]}),
  1095. ('AtanGrad', {
  1096. 'block': G.AtanGrad(),
  1097. 'desc_inputs': [[2, 3], [2, 3]],
  1098. 'skip': ['backward']}),
  1099. ('Atanh', {
  1100. 'block': P.Atanh(),
  1101. 'desc_inputs': [[2, 3]],
  1102. 'desc_bprop': [[2, 3]]}),
  1103. ('Cosh', {
  1104. 'block': P.Cosh(),
  1105. 'desc_inputs': [[3, 4, 5]],
  1106. 'desc_bprop': [[3, 4, 5]]}),
  1107. ('Sinh', {
  1108. 'block': P.Sinh(),
  1109. 'desc_inputs': [[3, 4, 5]],
  1110. 'desc_bprop': [[3, 4, 5]]}),
  1111. ('Inv', {
  1112. 'block': P.Inv(),
  1113. 'desc_inputs': [[21, 9, 12, 5]],
  1114. 'desc_bprop': [[21, 9, 12, 5]]}),
  1115. ('Invert', {
  1116. 'block': P.Invert(),
  1117. 'desc_inputs': [Tensor(np.array([[24, 4, 13, 9], [1, 5, 10, 8]]).astype(np.int16))],
  1118. 'desc_bprop': [],
  1119. 'skip': ['backward']}),
  1120. ('HistogramFixedWidth', {
  1121. 'block': P.HistogramFixedWidth(5),
  1122. 'desc_inputs': [Tensor([-1.0, 0.0, 1.5, 2.0, 5.0, 15], mstype.float16), Tensor([0.0, 5.0], mstype.float16)],
  1123. 'desc_bprop': [],
  1124. 'skip': ['backward']}),
  1125. ('Mod', {
  1126. 'block': P.Mod(),
  1127. 'desc_inputs': [[3, 4, 5], [2, 3, 4, 5]],
  1128. 'desc_bprop': [[2, 3, 4, 5]]}),
  1129. ('IFMR', {
  1130. 'block': P.IFMR(min_percentile=0.2, max_percentile=0.9, search_range=(1.0, 2.0),
  1131. search_step=1.0, with_offset=False),
  1132. 'desc_inputs': [[3, 4, 5], Tensor([0.1], mstype.float32), Tensor([0.9], mstype.float32),
  1133. Tensor(np.random.rand(4).astype(np.int32))],
  1134. 'desc_bprop': [],
  1135. 'skip': ['backward']}),
  1136. ]
  1137. test_case_nn_ops = [
  1138. ('BiasAdd', {
  1139. 'block': P.BiasAdd(),
  1140. 'desc_inputs': [[1, 3, 3, 3], [3]],
  1141. 'desc_bprop': [[1, 3, 3, 3]]}),
  1142. ('BiasAddGrad', {
  1143. 'block': G.BiasAddGrad(),
  1144. 'desc_inputs': [[1, 3, 3, 3]],
  1145. 'skip': ['backward']}),
  1146. ('Gelu', {
  1147. 'block': P.Gelu(),
  1148. 'desc_inputs': [[1, 3, 4, 4]],
  1149. 'desc_bprop': [[1, 3, 4, 4]]}),
  1150. ('GeluGrad', {
  1151. 'block': G.GeluGrad(),
  1152. 'desc_inputs': [[2, 2], [2, 2], [2, 2]],
  1153. 'desc_bprop': [[2, 2]],
  1154. 'skip': ['backward']}),
  1155. ('Tanh', {
  1156. 'block': P.Tanh(),
  1157. 'desc_inputs': [[1, 3, 4, 4]],
  1158. 'desc_bprop': [[1, 3, 4, 4]]}),
  1159. ('TanhGrad', {
  1160. 'block': G.TanhGrad(),
  1161. 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
  1162. 'desc_bprop': [[1, 3, 4, 4]],
  1163. 'skip': ['backward']}),
  1164. ('ReLU', {
  1165. 'block': P.ReLU(),
  1166. 'desc_inputs': [[1, 3, 4, 4]],
  1167. 'desc_bprop': [[1, 3, 4, 4]]}),
  1168. ('ReLU6', {
  1169. 'block': P.ReLU6(),
  1170. 'desc_inputs': [[1, 3, 4, 4]],
  1171. 'desc_bprop': [[1, 3, 4, 4]]}),
  1172. ('ReLUV2', {
  1173. 'block': P.ReLUV2(),
  1174. 'desc_inputs': [[1, 3, 4, 4]],
  1175. 'desc_bprop': [[1, 3, 4, 4], ([1, 1, 4, 4, 2], {'dtype': np.uint8})]}),
  1176. ('ReLUGrad', {
  1177. 'block': G.ReluGrad(),
  1178. 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
  1179. 'skip': ['backward']}),
  1180. ('Softplus', {
  1181. 'block': P.Softplus(),
  1182. 'desc_inputs': [[1, 3, 4, 4]],
  1183. 'desc_bprop': [[1, 3, 4, 4]]}),
  1184. ('SoftplusGrad', {
  1185. 'block': G.SoftplusGrad(),
  1186. 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
  1187. 'skip': ['backward']}),
  1188. ('Elu', {
  1189. 'block': P.Elu(),
  1190. 'desc_inputs': [[2, 3, 4]],
  1191. 'desc_bprop': [[2, 3, 4]]}),
  1192. ('EluGrad', {
  1193. 'block': G.EluGrad(),
  1194. 'desc_inputs': [[2, 3, 4], [2, 3, 4]],
  1195. 'desc_bprop': [[2, 3, 4]],
  1196. 'skip': ['backward']}),
  1197. ('Sigmoid', {
  1198. 'block': P.Sigmoid(),
  1199. 'desc_inputs': [[1, 3, 4, 4]],
  1200. 'desc_bprop': [[1, 3, 4, 4]]}),
  1201. ('MaxPool', {
  1202. 'block': P.MaxPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  1203. 'desc_inputs': [[100, 3, 28, 28]],
  1204. 'desc_bprop': [[100, 3, 14, 14]]}),
  1205. ('MaxPoolGrad', {
  1206. 'block': G.MaxPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  1207. 'desc_inputs': [[3, 4, 6, 6], [3, 4, 3, 3], [3, 4, 3, 3]],
  1208. 'desc_bprop': [[3, 4, 6, 6]],
  1209. 'skip': ['backward']}),
  1210. ('AvgPool', {
  1211. 'block': P.AvgPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  1212. 'desc_inputs': [[100, 3, 28, 28]],
  1213. 'desc_bprop': [[100, 3, 14, 14]]}),
  1214. ('MaxPoolWithArgmax', {
  1215. 'block': P.MaxPoolWithArgmax(ksize=2, strides=2),
  1216. 'desc_inputs': [[128, 32, 32, 64]],
  1217. 'desc_bprop': [[128, 32, 16, 32], ([128, 32, 4, 33], {'dtype': np.uint16})]}),
  1218. ('SoftmaxCrossEntropyWithLogits', {
  1219. 'block': P.SoftmaxCrossEntropyWithLogits(),
  1220. 'desc_inputs': [[1, 10], [1, 10]],
  1221. 'desc_bprop': [[1], [1, 10]],
  1222. 'skip': ['backward_exec']}),
  1223. ('Flatten', {
  1224. 'block': P.Flatten(),
  1225. 'desc_inputs': [[128, 32, 32, 64]],
  1226. 'desc_bprop': [[128, 65536]]}),
  1227. ('LogSoftmax', {
  1228. 'block': P.LogSoftmax(),
  1229. 'desc_inputs': [[64, 2]],
  1230. 'desc_bprop': [[64, 2]]}),
  1231. ('LogSoftmaxGrad', {
  1232. 'block': G.LogSoftmaxGrad(),
  1233. 'desc_inputs': [[16, 1234], [16, 1234]],
  1234. 'desc_bprop': [[64, 2]],
  1235. 'skip': ['backward']}),
  1236. ('L2Normalize', {
  1237. 'block': P.L2Normalize(),
  1238. 'desc_inputs': [[2, 2]],
  1239. 'desc_bprop': [[2, 2]]}),
  1240. ('L2NormalizeGrad', {
  1241. 'block': G.L2NormalizeGrad(),
  1242. 'desc_inputs': [[2, 2], [2, 2], [2, 2]],
  1243. 'desc_bprop': [[2, 2]],
  1244. 'skip': ['backward']}),
  1245. ('LayerNorm', {
  1246. 'block': P.LayerNorm(),
  1247. 'desc_inputs': [[2, 16], [16], [16]],
  1248. 'desc_bprop': [[2, 16], [2, 1], [2, 1]]}),
  1249. ('LayerNormGrad', {
  1250. 'block': G.LayerNormGrad(),
  1251. 'desc_inputs': [[2, 16], [2, 16], [2, 16], [2, 16], [16]],
  1252. 'desc_bprop': [[2, 16], [16], [16]],
  1253. 'skip': ['backward']}),
  1254. ('FusedBatchNormGrad', {
  1255. 'block': G.FusedBatchNormGrad(),
  1256. 'desc_inputs': [[128, 64, 32, 64], [128, 64, 32, 64], [64], [64], [64]],
  1257. 'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
  1258. 'skip': ['backward']}),
  1259. ('BatchNorm', {
  1260. 'block': P.BatchNorm(),
  1261. 'desc_inputs': [[128, 64, 32, 32], [64], [64], [64], [64]],
  1262. 'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
  1263. 'skip': []}),
  1264. ('BatchNormGrad', {
  1265. 'block': G.BatchNormGrad(),
  1266. 'desc_inputs': [[128, 64, 32, 32], [128, 64, 32, 32], [64], [64], [64]],
  1267. 'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
  1268. 'skip': ['backward']}),
  1269. ('TopK', {
  1270. 'block': P.TopK(),
  1271. 'desc_const': [5],
  1272. 'desc_inputs': [[20, 20, 10]],
  1273. 'desc_bprop': [[20, 20, 5]],
  1274. 'skip': ['backward']}),
  1275. ('GatherV2_0', {
  1276. 'block': P.GatherV2(),
  1277. 'desc_const': [0],
  1278. 'desc_inputs': [[3, 1, 2], Tensor(np.array([0, 1]).astype(np.int32))],
  1279. 'desc_bprop': [[2, 1, 2]]}),
  1280. ('GatherV2_1', {
  1281. 'block': P.GatherV2(),
  1282. 'desc_const': [2],
  1283. 'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
  1284. 'desc_bprop': [[3, 1, 2]]}),
  1285. ('GatherV2_2', {
  1286. 'block': P.GatherV2(),
  1287. 'desc_const': [0],
  1288. 'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  1289. 'desc_bprop': [[3, 2, 1, 3]]}),
  1290. ('GatherV2_3', {
  1291. 'block': P.GatherV2(),
  1292. 'desc_const': [2],
  1293. 'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  1294. 'desc_bprop': [[3, 1, 3, 2]]}),
  1295. ('GatherV2_4', {
  1296. 'block': P.GatherV2(),
  1297. 'desc_const': [1],
  1298. 'desc_inputs': [[32, 5, 1024], Tensor(np.array([3]).astype(np.int32))],
  1299. 'desc_bprop': [[32, 1, 1024]]}),
  1300. ('GatherV2_5', {
  1301. 'block': P.GatherV2(),
  1302. 'desc_const': [-1],
  1303. 'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
  1304. 'desc_bprop': [[3, 1, 2]]}),
  1305. ('GatherV2_6', {
  1306. 'block': P.GatherV2(),
  1307. 'desc_const': [0],
  1308. 'desc_inputs': [[1152], Tensor(np.array(10).astype(np.int32))],
  1309. 'desc_bprop': [Tensor(np.array(10).astype(np.float32))]}),
  1310. ('SparseGatherV2_0', {
  1311. 'block': P.SparseGatherV2(),
  1312. 'desc_const': [0],
  1313. 'desc_inputs': [[3, 1, 2], Tensor(np.array([0, 1]).astype(np.int32))],
  1314. 'desc_bprop': [[2, 1, 2]]}),
  1315. ('Range', {
  1316. 'block': inner.Range(1.0, 5.0),
  1317. 'desc_inputs': [Tensor(np.ones([10]).astype(np.float32))],
  1318. 'desc_bprop': [[10]]}),
  1319. ('UnsortedSegmentSum', {
  1320. 'block': P.UnsortedSegmentSum(),
  1321. 'desc_const': [1280],
  1322. 'desc_inputs': [[1280, 1024], Tensor(np.ones(1280).astype(np.int32))],
  1323. 'desc_bprop': [[1280, 1024]]}),
  1324. ('UnsortedSegmentSum_1', {
  1325. 'block': P.UnsortedSegmentSum(),
  1326. 'desc_const': [4],
  1327. 'desc_inputs': [[3, 2, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  1328. 'desc_bprop': [[4, 1, 3]]}),
  1329. ('UnsortedSegmentMin', {
  1330. 'block': P.UnsortedSegmentMin(),
  1331. 'desc_const': [4],
  1332. 'desc_inputs': [[3, 2, 1, 3], Tensor(np.array([1, 2, 3]).astype(np.int32))],
  1333. 'desc_bprop': [[4, 2, 1, 3]]}),
  1334. ('UnsortedSegmentProd', {
  1335. 'block': P.UnsortedSegmentProd(),
  1336. 'desc_const': [4],
  1337. 'desc_inputs': [[3, 2, 1, 3], Tensor(np.array([0, 1, 0]).astype(np.int32))],
  1338. 'desc_bprop': [[4, 2, 1, 3]]}),
  1339. ('DropoutGenMask', {
  1340. 'block': P.DropoutGenMask(),
  1341. 'desc_const': [(2, 2), Tensor(0.5, mstype.float32)],
  1342. 'desc_inputs': [],
  1343. 'desc_bprop': [Tensor(np.ones(1).astype(np.int8))],
  1344. 'skip': ['backward']}),
  1345. ('DropoutDoMask', {
  1346. 'block': P.DropoutDoMask(),
  1347. 'desc_const': [Tensor(0.5)],
  1348. 'desc_inputs': [[64, 12, 128, 128], Tensor(np.ones(1572864).astype(np.uint8))],
  1349. 'desc_bprop': [[64, 12, 128, 128]]}),
  1350. ('Dropout', {
  1351. 'block': nn.Dropout(0.5),
  1352. 'desc_inputs': [[64, 12, 128, 128]],
  1353. 'desc_bprop': [[64, 12, 128, 128]]}),
  1354. ('ReduceMean0', {
  1355. 'block': P.ReduceMean(),
  1356. 'desc_const': [(2,)],
  1357. 'desc_inputs': [[3, 2, 2]],
  1358. 'desc_bprop': [[3, 2]]}),
  1359. ('ReduceMean1', {
  1360. 'block': P.ReduceMean(),
  1361. 'desc_const': [2],
  1362. 'desc_inputs': [[3, 2, 2]],
  1363. 'desc_bprop': [[3, 2]]}),
  1364. ('All', {
  1365. 'block': P.ReduceAll(),
  1366. 'desc_const': [(1,)],
  1367. 'desc_inputs': [Tensor(np.ones([3, 2]).astype(np.bool_))],
  1368. 'desc_bprop': [[3]],
  1369. 'skip': ['backward']}),
  1370. ('DescConst', {
  1371. 'block': Tensor(np.array([2], np.float32)),
  1372. 'desc_inputs': [],
  1373. 'desc_bprop': [[1]],
  1374. 'skip': ['backward'],
  1375. 'add_fake_input': True}),
  1376. ('Fill', {
  1377. 'block': P.Fill(),
  1378. 'desc_const': [mstype.float32, (2, 3), 1.0],
  1379. 'desc_inputs': [],
  1380. 'desc_bprop': [[2, 3]],
  1381. 'skip': ['backward'],
  1382. 'add_fake_input': True}),
  1383. ('OnesLike', {
  1384. 'block': P.OnesLike(),
  1385. 'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
  1386. 'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
  1387. }),
  1388. ('ZerosLike', {
  1389. 'block': P.ZerosLike(),
  1390. 'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
  1391. 'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
  1392. }),
  1393. ('Softmax', {
  1394. 'block': P.Softmax(),
  1395. 'desc_inputs': [[5, 5]],
  1396. 'desc_bprop': [[5, 5]]}),
  1397. ('Softsign', {
  1398. 'block': P.Softsign(),
  1399. 'desc_inputs': [[5, 5]],
  1400. 'desc_bprop': [[5, 5]]}),
  1401. ('DepthwiseConv2dNative_1', {
  1402. 'block': P.DepthwiseConv2dNative(3, (3, 3), pad_mode="pad", pad=1, stride=2),
  1403. 'desc_inputs': [[10, 32, 32, 32], [1, 32, 3, 3]],
  1404. 'desc_bprop': [[10, 32, 16, 16]]}),
  1405. ('DepthwiseConv2dNative_2', {
  1406. 'block': P.DepthwiseConv2dNative(1, (3, 3), pad_mode="same", pad=0, stride=1),
  1407. 'desc_inputs': [[2592, 2048, 4, 4], [1, 2048, 3, 3]],
  1408. 'desc_bprop': [[2592, 2048, 4, 4]]}),
  1409. ('SigmoidCrossEntropyWithLogits', {
  1410. 'block': P.SigmoidCrossEntropyWithLogits(),
  1411. 'desc_inputs': [[128, 10], [128, 10]],
  1412. 'desc_bprop': [[128, 10]]}),
  1413. ('Pad', {
  1414. 'block': P.Pad(((1, 2), (2, 3))),
  1415. 'desc_inputs': [[7, 7]],
  1416. 'desc_bprop': [[10, 12]]}),
  1417. ('BinaryCrossEntropy', {
  1418. 'block': P.BinaryCrossEntropy(),
  1419. 'desc_inputs': [[1, 2, 3], [1, 2, 3], [1, 2, 3]],
  1420. 'desc_bprop': []}),
  1421. ('SparseApplyAdagrad', {
  1422. 'block': SparseApplyAdagradNet(),
  1423. 'desc_inputs': [[3, 3], Tensor(np.ones((3,), np.int32))],
  1424. 'desc_bprop': [[3, 3], [3, 3]],
  1425. 'skip': ['backward']}),
  1426. ('SparseApplyAdagradV2', {
  1427. 'block': SparseApplyAdagradV2Net(),
  1428. 'desc_inputs': [[3, 3], Tensor(np.ones((3,), np.int32))],
  1429. 'skip': ['backward']}),
  1430. ('SparseApplyFtrl', {
  1431. 'block': SparseApplyFtrlNet(),
  1432. 'desc_inputs': [[3, 3], Tensor(np.ones((3,), np.int32))],
  1433. 'skip': ['backward']}),
  1434. ('SparseApplyFtrlV2', {
  1435. 'block': SparseApplyFtrlV2Net(),
  1436. 'desc_inputs': [[3, 3], Tensor(np.ones((3,), np.int32))],
  1437. 'skip': ['backward']}),
  1438. ('ApplyProximalAdagrad', {
  1439. 'block': ApplyProximalAdagradNet(),
  1440. 'desc_inputs': [[3, 3]],
  1441. 'skip': ['backward']}),
  1442. ('SparseApplyProximalAdagrad', {
  1443. 'block': SparseApplyProximalAdagradNet(),
  1444. 'desc_inputs': [[3, 3], Tensor(np.ones((3,), np.int32))],
  1445. 'skip': ['backward']}),
  1446. ('ApplyAdaMax', {
  1447. 'block': ApplyAdaMaxNet(),
  1448. 'desc_inputs': [[3, 3]],
  1449. 'skip': ['backward']}),
  1450. ('ApplyAdadelta', {
  1451. 'block': ApplyAdadeltaNet(),
  1452. 'desc_inputs': [[3, 3]],
  1453. 'skip': ['backward']}),
  1454. ('ApplyAdagrad', {
  1455. 'block': ApplyAdagradNet(),
  1456. 'desc_inputs': [[3, 3]],
  1457. 'skip': ['backward']}),
  1458. ('ApplyAdagradV2', {
  1459. 'block': ApplyAdagradV2Net(),
  1460. 'desc_inputs': [[3, 3]],
  1461. 'skip': ['backward']}),
  1462. ('ApplyAddSign', {
  1463. 'block': ApplyAddSignNet(),
  1464. 'desc_inputs': [[3, 3]],
  1465. 'skip': ['backward']}),
  1466. ('ApplyPowerSign', {
  1467. 'block': ApplyPowerSignNet(),
  1468. 'desc_inputs': [[3, 3]],
  1469. 'skip': ['backward']}),
  1470. ('ApplyGradientDescent', {
  1471. 'block': ApplyGradientDescentNet(),
  1472. 'desc_inputs': [[3, 3]],
  1473. 'skip': ['backward']}),
  1474. ('ApplyProximalGradientDescent', {
  1475. 'block': ApplyProximalGradientDescentNet(),
  1476. 'desc_inputs': [[3, 3]],
  1477. 'skip': ['backward']}),
  1478. ('Flatten_1', {
  1479. 'block': NetForFlatten(),
  1480. 'desc_inputs': [Tensor(np.ones([2, 3, 4]).astype(np.int32)), Tensor(np.ones([2, 12]).astype(np.int32))],
  1481. 'desc_bprop': [Tensor(np.ones([2, 12]).astype(np.int32))],
  1482. 'skip': ['backward']}),
  1483. ('Flatten_2', {
  1484. 'block': NetForFlatten(),
  1485. 'desc_inputs': [Tensor(np.ones([8]).astype(np.int32)), Tensor(np.ones([8, 3]).astype(np.int32))],
  1486. 'desc_bprop': [Tensor(np.ones([8, 3]).astype(np.int32))],
  1487. 'skip': ['backward']}),
  1488. ('Flatten_3', {
  1489. 'block': NetForFlattenComposed(),
  1490. 'desc_inputs': [Tensor(np.ones([2, 3, 4]).astype(np.int32)), Tensor(np.ones([2, 12]).astype(np.int32))],
  1491. 'desc_bprop': [Tensor(np.ones([2, 12]).astype(np.int32))],
  1492. 'skip': []}),
  1493. ('ArgmaxNet', {
  1494. 'block': ArgmaxNet(),
  1495. 'desc_inputs': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
  1496. 'desc_bprop': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
  1497. 'skip': ['backward']}),
  1498. ('ArgminNet', {
  1499. 'block': ArgminNet(),
  1500. 'desc_inputs': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
  1501. 'desc_bprop': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
  1502. 'skip': ['backward']}),
  1503. ('StridedSliceNet', {
  1504. 'block': StridedSliceNet(),
  1505. 'desc_inputs': [[6, 7, 8, 9, 10]],
  1506. 'skip': ['backward']}),
  1507. ('OneHot', {
  1508. 'block': P.OneHot(),
  1509. 'desc_const': [3, Tensor(1.0, mstype.float32), Tensor(0.0, mstype.float32)],
  1510. 'desc_inputs': [Tensor(np.array([64]).astype(np.int32))],
  1511. 'desc_bprop': [[1, 3]]}),
  1512. ('ReduceProd_0', {
  1513. 'block': P.ReduceProd(),
  1514. 'desc_const': [0],
  1515. 'desc_inputs': [[3, 2]],
  1516. 'desc_bprop': [[2]]}),
  1517. ('ReduceProd_1', {
  1518. 'block': P.ReduceProd(keep_dims=True),
  1519. 'desc_const': [0],
  1520. 'desc_inputs': [[3, 2]],
  1521. 'desc_bprop': [[1, 2]]}),
  1522. ('CumProd', {
  1523. 'block': P.CumProd(),
  1524. 'desc_const': [0],
  1525. 'desc_inputs': [[3, 2]],
  1526. 'desc_bprop': [[3, 2]]}),
  1527. ('ApplyFtrl', {
  1528. 'block': ApplyFtrlNet(),
  1529. 'desc_inputs': [[3, 3]],
  1530. 'desc_bprop': [3, 3],
  1531. 'skip': ['backward']}),
  1532. ('ApplyRMSProp', {
  1533. 'block': ApplyRMSNet(),
  1534. 'desc_inputs': [[3, 3]],
  1535. 'desc_bprop': [3, 3],
  1536. 'skip': ['backward']}),
  1537. ('ApplyCenteredRMSProp', {
  1538. 'block': P.ApplyCenteredRMSProp(),
  1539. 'desc_const': [0.9, 0.0, 1e-10, 0.001],
  1540. 'desc_inputs': [Tensor(1., mstype.float32), Tensor(2., mstype.float32), Tensor(1., mstype.float32),
  1541. Tensor(2., mstype.float32), Tensor(1., mstype.float32)],
  1542. 'desc_bprop': [1],
  1543. 'skip': ['backward']}),
  1544. ('CTCLoss', {
  1545. 'block': P.CTCLoss(),
  1546. 'desc_inputs': [Tensor(np.ones([6, 4, 6]).astype(np.float32)),
  1547. Tensor(np.array([[0, 1], [1, 0], [2, 3], [3, 2]]).astype(np.int64)),
  1548. Tensor(np.array([1, 2, 3, 4]).astype(np.int32)),
  1549. Tensor(np.array([6, 6, 6, 6]).astype(np.int32))],
  1550. 'desc_bprop': [[4], [6, 4, 6]]}),
  1551. ('CTCGreedyDecoder', {
  1552. 'block': CTCGreedyDecoderNet(),
  1553. 'desc_inputs': [[2, 2, 3], Tensor(np.array([2, 2]).astype(np.int32))],
  1554. 'skip': ['backward']}),
  1555. ('L2Loss_1', {
  1556. 'block': P.L2Loss(),
  1557. 'desc_inputs': [Tensor(np.array([1, 2, 3, 4]), mstype.float32)],
  1558. 'desc_bprop': []}),
  1559. ('L2Loss_2', {
  1560. 'block': P.L2Loss(),
  1561. 'desc_inputs': [Tensor(np.array([[1, 1], [2, 2], [3, 3], [4, 4]]), mstype.float16)],
  1562. 'desc_bprop': []}),
  1563. ('ResizeBilinear', {
  1564. 'block': P.ResizeBilinear((5, 5)),
  1565. 'desc_inputs': [Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mstype.float16)],
  1566. 'desc_bprop': [Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mstype.float32)]}),
  1567. ('ResizeBilinearGrad', {
  1568. 'block': G.ResizeBilinearGrad(),
  1569. 'desc_inputs': [Tensor([[[[1, 2, 3, 4, 5]]]], mstype.float32), Tensor([[[[1, 2, 3, 4, 5]]]], mstype.float32)],
  1570. 'desc_bprop': [Tensor([[[[1, 2, 3, 4, 5]]]], mstype.float32)],
  1571. 'skip': ['backward']}),
  1572. ('ROIAlign', {
  1573. 'block': P.ROIAlign(7, 7, 0.03125, 2),
  1574. 'desc_inputs': [[2, 256, 192, 320], [1024, 5]],
  1575. 'desc_bprop': [[1024, 256, 7, 7]]}),
  1576. ('ROIAlignGrad', {
  1577. 'block': G.ROIAlignGrad((1, 1, 1, 1), 2, 2, 0.5, 2),
  1578. 'desc_inputs': [[1, 1, 2, 2], [1, 5]],
  1579. 'desc_bprop': [[1, 1, 2, 2]],
  1580. 'skip': ['backward']}),
  1581. ('LARSUpdate', {
  1582. 'block': P.LARSUpdate(1e-05, 0.001, False),
  1583. 'desc_const': [0.0, 0.001],
  1584. 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3]],
  1585. 'desc_bprop': [3, 3],
  1586. 'skip': ['backward']}),
  1587. ('SGD', {
  1588. 'block': P.SGD(0.0, 0.0, False),
  1589. 'desc_inputs': [[3, 3], [3, 3], Tensor(0.001, mstype.float32), [3, 3], Tensor(0.1, mstype.float32), [3, 3]],
  1590. 'desc_bprop': [3, 3],
  1591. 'skip': ['backward']}),
  1592. ('BinaryCrossEntropy', {
  1593. 'block': P.BinaryCrossEntropy(),
  1594. 'desc_inputs': [Tensor([[0.3, 0.8], [0.4, 0.3]], mstype.float16),
  1595. Tensor([[0.4, 1.2], [-0.4, -0.9]], mstype.float16),
  1596. Tensor([[-1.4, -0.7], [0.9, 0.7]], mstype.float16)],
  1597. 'desc_bprop': []}),
  1598. ('BinaryCrossEntropyGrad', {
  1599. 'block': G.BinaryCrossEntropyGrad(),
  1600. 'desc_inputs': [Tensor([[0.3, 0.8], [0.4, 0.3]], mstype.float16),
  1601. Tensor([[0.4, 1.2], [-0.4, -0.9]], mstype.float16), Tensor(0.85, mstype.float16),
  1602. Tensor([[-1.4, -0.7], [0.9, 0.7]], mstype.float16)],
  1603. 'desc_bprop': [],
  1604. 'skip': ['backward']}),
  1605. ('DataFormatDimMap', {
  1606. 'block': P.DataFormatDimMap(),
  1607. 'desc_inputs': [Tensor([0, 1, 2, 3], mstype.int32)],
  1608. 'desc_bprop': [],
  1609. 'skip': ['backward']}),
  1610. ('MaxPoolGradGrad', {
  1611. 'block': G.MaxPoolGradGrad(),
  1612. 'desc_inputs': [Tensor(np.random.rand(1, 1, 2, 2), mstype.float16),
  1613. Tensor(np.random.rand(1, 1, 2, 2), mstype.float16),
  1614. Tensor(np.random.rand(1, 1, 2, 2), mstype.float16)],
  1615. 'desc_bprop': [],
  1616. 'skip': ['backward']}),
  1617. ('MaxPoolGradGradWithArgmax', {
  1618. 'block': G.MaxPoolGradGradWithArgmax(),
  1619. 'desc_inputs': [Tensor(np.random.rand(1, 1, 2, 2), mstype.float16),
  1620. Tensor(np.random.rand(1, 1, 2, 2), mstype.float16),
  1621. Tensor(np.zeros((1, 1, 2, 2)), mstype.uint16)],
  1622. 'desc_bprop': [],
  1623. 'skip': ['backward']}),
  1624. ]
  1625. test_case_array_ops = [
  1626. ('SpaceToDepth', {
  1627. 'block': P.SpaceToDepth(2),
  1628. 'desc_inputs': [[1, 3, 2, 2]],
  1629. 'desc_bprop': [[1, 12, 1, 1]]}),
  1630. ('DepthToSpace', {
  1631. 'block': P.DepthToSpace(2),
  1632. 'desc_inputs': [[1, 12, 1, 1]],
  1633. 'desc_bprop': [[1, 3, 2, 2]]}),
  1634. ('Split', {
  1635. 'block': P.Split(1, 2),
  1636. 'desc_inputs': [Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]))],
  1637. 'skip': ['backward']}),
  1638. ('Argmax', {
  1639. 'block': P.Argmax(),
  1640. 'desc_inputs': [[128, 32, 32, 64]],
  1641. 'desc_bprop': [0],
  1642. 'skip': ['backward']}),
  1643. ('Argmin', {
  1644. 'block': P.Argmin(),
  1645. 'desc_inputs': [[128, 32, 32, 64]],
  1646. 'desc_bprop': [1],
  1647. 'skip': ['backward']}),
  1648. ('ArgMaxWithValue', {
  1649. 'block': P.ArgMaxWithValue(),
  1650. 'desc_inputs': [[128, 32, 32, 64]],
  1651. 'desc_bprop': [[1], [1]],
  1652. 'skip': ['backward']}),
  1653. ('ArgMinWithValue', {
  1654. 'block': P.ArgMinWithValue(),
  1655. 'desc_inputs': [[128, 32, 32, 64]],
  1656. 'desc_bprop': [[1], [1]],
  1657. 'skip': ['backward']}),
  1658. ('Transpose_dim3', {
  1659. 'block': P.Transpose(),
  1660. 'desc_const': [(0, 2, 1)],
  1661. 'desc_inputs': [[1, 2, 3]],
  1662. 'desc_bprop': [[1, 3, 2]]}),
  1663. ('Transpose_dim4', {
  1664. 'block': P.Transpose(),
  1665. 'desc_const': [(0, 1, 2, 3)],
  1666. 'desc_inputs': [[1, 2, 3, 4]],
  1667. 'desc_bprop': [[1, 2, 4, 3]]}),
  1668. ('AddN', {
  1669. 'block': NetForTupleInput(P.AddN()),
  1670. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  1671. 'desc_bprop': [[2, 3, 3, 5]]}),
  1672. ('AccumulateNV2', {
  1673. 'block': NetForTupleInput(P.AccumulateNV2()),
  1674. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  1675. 'desc_bprop': [[2, 3, 3, 5]]}),
  1676. ('Shape', {
  1677. 'block': P.Shape(),
  1678. 'desc_inputs': [[3, 3, 2, 2]],
  1679. 'skip': ['backward']}),
  1680. ('Reshape', {
  1681. 'block': P.Reshape(),
  1682. 'desc_const': [(64,)],
  1683. 'desc_inputs': [[64, 1]],
  1684. 'desc_bprop': [[64]]}),
  1685. ('Cast', {
  1686. 'block': P.Cast(),
  1687. 'desc_const': [mstype.int32],
  1688. 'desc_inputs': [[2, 3, 4, 5]],
  1689. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5)).astype(np.int32))]}),
  1690. ('ExpandDims', {
  1691. 'block': P.ExpandDims(),
  1692. 'desc_const': [0],
  1693. 'desc_inputs': [[2, 2]],
  1694. 'desc_bprop': [[1, 2, 2]]}),
  1695. ('ExpandDims_1', {
  1696. 'block': P.ExpandDims(),
  1697. 'desc_const': [-1],
  1698. 'desc_inputs': [[2, 2]],
  1699. 'desc_bprop': [[2, 2, 1]]}),
  1700. ('Squeeze', {
  1701. 'block': P.Squeeze(2),
  1702. 'desc_inputs': [[3, 2, 1]],
  1703. 'desc_bprop': [[3, 2]]}),
  1704. ('Squeeze_0', {
  1705. 'block': P.Squeeze(),
  1706. 'desc_inputs': [[3, 1, 2, 1]],
  1707. 'desc_bprop': [[3, 2]]}),
  1708. ('Squeeze_1', {
  1709. 'block': P.Squeeze(),
  1710. 'desc_inputs': [[1, 1, 1, 1]],
  1711. 'desc_bprop': [1.0],
  1712. 'skip': ['backward']}),
  1713. ('Squeeze_2', {
  1714. 'block': P.Squeeze((2, 3)),
  1715. 'desc_inputs': [[3, 2, 1, 1]],
  1716. 'desc_bprop': [[3, 2]]}),
  1717. ('Size', {
  1718. 'block': P.Size(),
  1719. 'desc_inputs': [[2, 3, 5]],
  1720. 'skip': ['backward']}),
  1721. ('Tile_0', {
  1722. 'block': P.Tile(),
  1723. 'desc_const': [(1, 2)],
  1724. 'desc_inputs': [[64, 1]],
  1725. 'desc_bprop': [[64, 2]]}),
  1726. ('Tile_1', {
  1727. 'block': P.Tile(),
  1728. 'desc_const': [(1, 1)],
  1729. 'desc_inputs': [[64, 1]],
  1730. 'desc_bprop': [[64, 1]]}),
  1731. ('Tile_2', {
  1732. 'block': P.Tile(),
  1733. 'desc_const': [(2, 1, 1, 2)],
  1734. 'desc_inputs': [[2, 2, 2]],
  1735. 'desc_bprop': [[2, 2, 2, 4]]}),
  1736. ('ReverseV2', {
  1737. 'block': P.ReverseV2(axis=[1]),
  1738. 'desc_inputs': [(Tensor(np.array([[1, 2, 3, 4], [5, 6, 7, 8]]).astype(np.float32)))],
  1739. 'desc_bprop': [(Tensor(np.array([[1, 2, 3, 4], [5, 6, 7, 8]]).astype(np.float32)))]}),
  1740. ('Rint', {
  1741. 'block': P.Rint(),
  1742. 'desc_inputs': [(Tensor(np.array([-1.6, -0.1, 1.5, 2.0]).astype(np.float32)))],
  1743. 'skip': ['backward']}),
  1744. ('ConcatV2_0', {
  1745. 'block': NetForConcat1(),
  1746. 'desc_inputs': [
  1747. Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)),
  1748. Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
  1749. 'desc_bprop': [([4, 2], {'dtype': np.int32})]}),
  1750. ('ConcatV2_1', {
  1751. 'block': NetForConcat2(),
  1752. 'desc_inputs': [Tensor(np.array([[[0, 1, 2]], [[2, 1, 2]]]).astype(np.int32)),
  1753. Tensor(np.array([[[0, 1]], [[2, 1]]]).astype(np.int32))],
  1754. 'desc_bprop': [([2, 1, 5], {'dtype': np.int32})]}),
  1755. ('ConcatV2_2', {
  1756. 'block': NetForConcat(),
  1757. 'desc_inputs': [[2, 2]],
  1758. 'desc_bprop': [[4, 2]]}),
  1759. ('ConcatV2_3', {
  1760. 'block': NetForConcat1(),
  1761. 'desc_inputs': [[2, 2], [2, 2]],
  1762. 'desc_bprop': [[4, 2]]}),
  1763. ('ConcatV2_4', {
  1764. 'block': NetForConcat3(),
  1765. 'desc_inputs': [
  1766. Tensor(np.ones((3, 2, 3), np.float32)),
  1767. Tensor(np.ones((5, 2, 3), np.float32)),
  1768. Tensor(np.ones((6, 2, 3), np.float32))],
  1769. 'desc_bprop': [[14, 2, 3]]}),
  1770. ('ConcatV2_5', {
  1771. 'block': NetForConcat4(),
  1772. 'desc_inputs': [Tensor(np.array([1], np.float32)),
  1773. Tensor(np.array([1], np.float32)),
  1774. Tensor(np.array([1], np.float32))],
  1775. 'desc_bprop': [[3, ]]}),
  1776. ('Pack_0', {
  1777. 'block': NetForPackInput(P.Pack()),
  1778. 'desc_inputs': [[2, 2], [2, 2], [2, 2]],
  1779. 'desc_bprop': [[3, 2, 2]],
  1780. }),
  1781. ('Pack_1', {
  1782. 'block': NetForPackInput(P.Pack(axis=-2)),
  1783. 'desc_inputs': [[3, 2, 3], [3, 2, 3], [3, 2, 3]],
  1784. 'desc_bprop': [[3, 2, 3, 3]],
  1785. }),
  1786. ('Pack_2', {
  1787. 'block': NetForPackInput(P.Pack()),
  1788. 'desc_inputs': [[128, 128], [128, 128]],
  1789. 'desc_bprop': [[2, 128, 128]],
  1790. }),
  1791. ('Pack_3', {
  1792. 'block': NetForPackInput(P.Pack()),
  1793. 'desc_inputs': [[2, 2]],
  1794. 'desc_bprop': [[1, 2, 2]]}),
  1795. ('Unpack_0', {
  1796. 'block': NetForUnpackInput(P.Unpack(axis=0)),
  1797. 'desc_inputs': [[2, 4]],
  1798. 'desc_bprop': [[4], [4]],
  1799. }),
  1800. ('Unpack_1', {
  1801. 'block': NetForUnpackInput(P.Unpack(axis=-1)),
  1802. 'desc_inputs': [Tensor(np.array([[1, 1, 1]], np.float32))],
  1803. 'desc_bprop': [[1], [1], [1]],
  1804. }),
  1805. ('Diag_1', {
  1806. 'block': P.Diag(),
  1807. 'desc_inputs': [[4]],
  1808. 'desc_bprop': [[4, 4]],
  1809. }),
  1810. ('Diag_2', {
  1811. 'block': P.Diag(),
  1812. 'desc_inputs': [[4, 4]],
  1813. 'desc_bprop': [[4, 4, 4, 4]],
  1814. }),
  1815. ('DiagPart_1', {
  1816. 'block': P.DiagPart(),
  1817. 'desc_inputs': [[4, 4]],
  1818. 'desc_bprop': [[4]],
  1819. }),
  1820. ('DiagPart_2', {
  1821. 'block': P.DiagPart(),
  1822. 'desc_inputs': [[4, 4, 4, 4]],
  1823. 'desc_bprop': [[4, 4]],
  1824. }),
  1825. ('SpaceToBatch_1', {
  1826. 'block': P.SpaceToBatch(2, [[0, 0], [0, 0]]),
  1827. 'desc_inputs': [[1, 3, 2, 2]],
  1828. 'desc_bprop': [[4, 3, 1, 1]],
  1829. }),
  1830. ('SpaceToBatch_2', {
  1831. 'block': P.SpaceToBatch(2, [[1, 1], [0, 4]]),
  1832. 'desc_inputs': [[1, 3, 2, 2]],
  1833. 'desc_bprop': [[4, 3, 2, 3]],
  1834. }),
  1835. ('BatchToSpace_1', {
  1836. 'block': P.BatchToSpace(2, [[0, 0], [0, 0]]),
  1837. 'desc_inputs': [[4, 3, 1, 1]],
  1838. 'desc_bprop': [[1, 3, 2, 2]],
  1839. }),
  1840. ('BatchToSpace_2', {
  1841. 'block': P.BatchToSpace(2, [[0, 0], [0, 1]]),
  1842. 'desc_inputs': [[4, 3, 1, 1]],
  1843. 'desc_bprop': [[1, 3, 2, 1]],
  1844. }),
  1845. ('UnsortedSegmentMin_1', {
  1846. 'block': P.UnsortedSegmentMin(),
  1847. 'desc_const': [2],
  1848. 'desc_inputs': [Tensor(np.array([[1, 2, 3], [4, 5, 6], [4, 2, 1]]).astype(np.float32)),
  1849. Tensor(np.array([0, 1, 1]).astype(np.int32))],
  1850. 'desc_bprop': [Tensor(np.array([[1, 2, 3], [4, 2, 1]]).astype(np.float32))]}),
  1851. ('BroadcastTo', {
  1852. 'block': P.BroadcastTo((2, 3)),
  1853. 'desc_inputs': [Tensor(np.array([1, 2, 3]).astype(np.float32))],
  1854. 'desc_bprop': [Tensor(np.array([[1, 2, 3], [1, 2, 3]]).astype(np.float32))]}),
  1855. ('InTopK', {
  1856. 'block': P.InTopK(2),
  1857. 'desc_inputs': [Tensor(np.array([[1, 2, 3], [2, 3, 6], [4, 2, 1]]).astype(np.float32)),
  1858. Tensor(np.array([2, 1, 2]).astype(np.int32))],
  1859. 'skip': ['backward'],
  1860. }),
  1861. ('InplaceUpdate', {
  1862. 'block': P.InplaceUpdate((0, 2)),
  1863. 'desc_inputs': [Tensor(np.arange(24).reshape(3, 4, 2).astype(np.float32)),
  1864. Tensor(np.arange(16).reshape(2, 4, 2).astype(np.float32))],
  1865. 'skip': ['backward'],
  1866. }),
  1867. ('ReverseSequence', {
  1868. 'block': P.ReverseSequence(1, 0),
  1869. 'desc_inputs': [Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).astype(np.float32)),
  1870. Tensor(np.array([1, 2, 3]).astype(np.int32))],
  1871. 'desc_bprop': [[3, 3]]}),
  1872. ('EditDistance', {
  1873. 'block': EditDistance(Tensor(np.array([1, 1, 2]).astype(np.int64)),
  1874. Tensor(np.array([2, 2, 2]).astype(np.int64))),
  1875. 'desc_inputs': [Tensor(np.array([[0, 0, 0], [1, 0, 1], [1, 1, 1]]).astype(np.int64)),
  1876. Tensor(np.array([1, 2, 3]).astype(np.float32)),
  1877. Tensor(np.array([[0, 1, 0], [0, 0, 1], [1, 1, 0], [1, 0, 1]]).astype(np.int64)),
  1878. Tensor(np.array([1, 3, 2, 1]).astype(np.float32))],
  1879. 'skip': ['backward'],
  1880. }),
  1881. ('LinSpace', {
  1882. 'block': inner.LinSpace(),
  1883. 'desc_inputs': [Tensor([5, 5.5], mstype.float32),
  1884. Tensor(1, mstype.float32),
  1885. Tensor(10, mstype.float32),
  1886. Tensor(5, mstype.int32)],
  1887. 'skip': ['backward'],
  1888. }),
  1889. ('MatrixDiag', {
  1890. 'block': inner.MatrixDiag(),
  1891. 'desc_inputs': [Tensor(np.array([1, -1]), mstype.float32),
  1892. Tensor(np.arange(-12, 0).reshape(3, 2, 2), mstype.float32)],
  1893. 'skip': ['backward'],
  1894. }),
  1895. ('MatrixDiagPart', {
  1896. 'block': inner.MatrixDiagPart(),
  1897. 'desc_inputs': [Tensor(np.arange(12).reshape(3, 2, 2), mstype.float32),
  1898. Tensor(np.arange(-12, 0).reshape(3, 2, 2), mstype.float32)],
  1899. 'skip': ['backward'],
  1900. }),
  1901. ('MatrixSetDiag', {
  1902. 'block': inner.MatrixSetDiag(),
  1903. 'desc_inputs': [Tensor(np.arange(12).reshape(3, 2, 2), mstype.float32),
  1904. Tensor(np.arange(6).reshape(3, 2), mstype.float32),
  1905. Tensor(np.arange(-12, 0).reshape(3, 2, 2), mstype.float32)],
  1906. 'skip': ['backward'],
  1907. }),
  1908. ('TransShape', {
  1909. 'block': P.TransShape(),
  1910. 'desc_const': [(1, 12, 24, 24)],
  1911. 'desc_inputs': [[1, 3, 24, 24]],
  1912. 'desc_bprop': [[1, 12, 24, 24]],
  1913. }),
  1914. ('ParallelConcat', {
  1915. 'block': ParallelConcatNet(),
  1916. 'desc_inputs': [Tensor([[1, 2]], mstype.float32),
  1917. Tensor([[5, 6]], mstype.float32)],
  1918. 'skip': ['backward'],
  1919. }),
  1920. ]
  1921. test_case_other_ops = [
  1922. ('ScalarLog', {
  1923. 'block': F.scalar_log,
  1924. 'desc_const': [0.0],
  1925. 'desc_inputs': [],
  1926. 'desc_bprop': [1],
  1927. 'skip': ['backward']}),
  1928. ('BoundingBoxEncode', {
  1929. 'block': P.BoundingBoxEncode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)),
  1930. 'desc_inputs': [[256, 4], [256, 4]],
  1931. 'desc_bprop': [[256, 4]],
  1932. 'skip': ['backward']}),
  1933. ('BoundingBoxDecode', {
  1934. 'block': P.BoundingBoxDecode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0), max_shape=(768, 1280)),
  1935. 'desc_inputs': [[256, 4], [256, 4]],
  1936. 'desc_bprop': [[256, 4]],
  1937. 'skip': ['backward']}),
  1938. ('GatherNd', {
  1939. 'block': P.GatherNd(),
  1940. 'desc_inputs': (Tensor(np.ones((1, 3, 6, 6), np.float32)),
  1941. Tensor(np.ones((2, 4), np.int32))),
  1942. 'desc_bprop': [[2]]}),
  1943. ('ScatterNd', {
  1944. 'block': P.ScatterNd(),
  1945. 'desc_const': [(3, 3)],
  1946. 'desc_inputs': (Tensor(np.ones((2, 2), np.int32)),
  1947. Tensor(np.ones((2,), np.int32))),
  1948. 'desc_bprop': [([3, 3], {'dtype': np.int32})]}),
  1949. ('TensorScatterUpdate', {
  1950. 'block': P.TensorScatterUpdate(),
  1951. 'desc_inputs': (Tensor(np.arange(3 * 4 * 5).reshape((3, 4, 5)), mstype.float32),
  1952. Tensor(np.array([[0, 1], [1, 2]], np.int32)),
  1953. Tensor(np.ones([2, 5], np.float32) * 99)),
  1954. 'desc_bprop': [([3, 4, 5], {'dtype': np.float32})]}),
  1955. ('ScatterMaxUseLocking', {
  1956. 'block': ScatterMax(use_locking=True),
  1957. 'desc_inputs': (Tensor(np.array([1, 0], np.int32)),
  1958. Tensor(np.array([[5.0, 5.0, 5.0], [4.0, 4.0, 4.0]], np.float32))),
  1959. 'skip': ['backward']}),
  1960. ('ScatterMax1d', {
  1961. 'block': ScatterMax(),
  1962. 'desc_inputs': (Tensor(np.array([1, 0], np.int32)),
  1963. Tensor(np.array([[5.0, 5.0, 5.0], [4.0, 4.0, 4.0]], np.float32))),
  1964. 'skip': ['backward']}),
  1965. ('ScatterMaxF32', {
  1966. 'block': ScatterMax(),
  1967. 'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)),
  1968. Tensor(np.ones([2, 2, 3], np.float32) * 99)),
  1969. 'skip': ['backward']}),
  1970. ('ScatterMaxF16', {
  1971. 'block': ScatterMax(np.float16),
  1972. 'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)),
  1973. Tensor(np.ones([2, 2, 3], np.float16) * 99)),
  1974. 'skip': ['backward']}),
  1975. ('ScatterMaxI32', {
  1976. 'block': ScatterMax(np.int32),
  1977. 'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)),
  1978. Tensor(np.ones([2, 2, 3], np.int32) * 99)),
  1979. 'skip': ['backward']}),
  1980. ('ScatterMinUseLocking', {
  1981. 'block': ScatterMin(use_locking=True),
  1982. 'desc_inputs': (Tensor(np.array([1, 0], np.int32)),
  1983. Tensor(np.ones([2, 3], np.float32))),
  1984. 'skip': ['backward']}),
  1985. ('ScatterMin1d', {
  1986. 'block': ScatterMin(),
  1987. 'desc_inputs': (Tensor(np.array([1, 0], np.int32)),
  1988. Tensor(np.ones([2, 3], np.float32))),
  1989. 'skip': ['backward']}),
  1990. ('ScatterMinF32', {
  1991. 'block': ScatterMin(),
  1992. 'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)),
  1993. Tensor(np.ones([2, 2, 3], np.float32))),
  1994. 'skip': ['backward']}),
  1995. ('ScatterMinF16', {
  1996. 'block': ScatterMin(np.float16),
  1997. 'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)),
  1998. Tensor(np.ones([2, 2, 3], np.float16))),
  1999. 'skip': ['backward']}),
  2000. ('ScatterMinI32', {
  2001. 'block': ScatterMin(np.int32),
  2002. 'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)),
  2003. Tensor(np.ones([2, 2, 3], np.int32))),
  2004. 'skip': ['backward']}),
  2005. ('ScatterUpdate', {
  2006. 'block': ScatterUpdate((6,)),
  2007. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2008. Tensor(np.array([2.0, 3.0, 4.0], np.float32))),
  2009. 'skip': ['backward']}),
  2010. ('ScatterAddUseLocking', {
  2011. 'block': ScatterAdd((6,), use_locking=True),
  2012. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2013. Tensor(np.array([2.0, 3.0, 4.0], np.float32))),
  2014. 'skip': ['backward']}),
  2015. ('ScatterNonAliasingAdd_1d', {
  2016. 'block': ScatterNonAliasingAdd((8,)),
  2017. 'desc_inputs': (Tensor(np.array([[2], [3], [4], [5]], np.int32)),
  2018. Tensor(np.array([2.0, 3.0, 4.0, 8.0], np.float32))),
  2019. 'skip': ['backward']}),
  2020. ('ScatterNdAdd', {
  2021. 'block': ScatterNdAdd((8,)),
  2022. 'desc_inputs': (Tensor(np.array([[2], [3], [4], [5]], np.int32)),
  2023. Tensor(np.array([2.0, 3.0, 4.0, 8.0], np.float32))),
  2024. 'skip': ['backward']}),
  2025. ('ScatterNdSub', {
  2026. 'block': ScatterNdAdd((8,)),
  2027. 'desc_inputs': (Tensor(np.array([[2], [3], [4], [5]], np.int32)),
  2028. Tensor(np.array([2.0, 3.0, 4.0, 8.0], np.float32))),
  2029. 'skip': ['backward']}),
  2030. ('ScatterAdd', {
  2031. 'block': ScatterAdd((6,)),
  2032. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2033. Tensor(np.array([2.0, 3.0, 4.0], np.float32))),
  2034. 'skip': ['backward']}),
  2035. ('ScatterAddScalar', {
  2036. 'block': ScatterAdd((6,)),
  2037. 'desc_inputs': (Tensor(np.array([2], np.int32)),
  2038. Tensor(np.array([2.0], np.float32))),
  2039. 'skip': ['backward']}),
  2040. ('ScatterAdd2d', {
  2041. 'block': ScatterAdd((3, 4)),
  2042. 'desc_inputs': (Tensor(np.array([[0, 1], [1, 2]], np.int32)),
  2043. Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2]],
  2044. [[3, 3, 3, 3], [4, 4, 4, 4]]], np.float32))),
  2045. 'skip': ['backward']}),
  2046. ('ScatterAddF16', {
  2047. 'block': ScatterAdd((6,), np.float16),
  2048. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2049. Tensor(np.array([2.0, 3.0, 4.0], np.float16))),
  2050. 'skip': ['backward']}),
  2051. ('ScatterAddI8', {
  2052. 'block': ScatterAdd((6,), np.int8),
  2053. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2054. Tensor(np.array([2, 3, 4], np.int8))),
  2055. 'skip': ['backward']}),
  2056. ('ScatterAddI32', {
  2057. 'block': ScatterAdd((6,), np.int32),
  2058. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2059. Tensor(np.array([2, 3, 4], np.int32))),
  2060. 'skip': ['backward']}),
  2061. ('ScatterAddU8', {
  2062. 'block': ScatterAdd((6,), np.uint8),
  2063. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2064. Tensor(np.array([2, 3, 4], np.uint8))),
  2065. 'skip': ['backward']}),
  2066. ('ScatterMulUseLocking', {
  2067. 'block': ScatterMul((6,), use_locking=True),
  2068. 'desc_inputs': (Tensor(np.array([2], np.int32)),
  2069. Tensor(np.array([2.0], np.float32))),
  2070. 'skip': ['backward']}),
  2071. ('ScatterMulScalar', {
  2072. 'block': ScatterMul((6,)),
  2073. 'desc_inputs': (Tensor(np.array([2], np.int32)),
  2074. Tensor(np.array([2.0], np.float32))),
  2075. 'skip': ['backward']}),
  2076. ('ScatterMul2d', {
  2077. 'block': ScatterMul((3, 4)),
  2078. 'desc_inputs': (Tensor(np.array([[0, 1], [1, 2]], np.int32)),
  2079. Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2]],
  2080. [[3, 3, 3, 3], [4, 4, 4, 4]]], np.float32))),
  2081. 'skip': ['backward']}),
  2082. ('ScatterMulF16', {
  2083. 'block': ScatterMul((6,), np.float16),
  2084. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2085. Tensor(np.array([2.0, 3.0, 4.0], np.float16))),
  2086. 'skip': ['backward']}),
  2087. ('ScatterMulI8', {
  2088. 'block': ScatterMul((6,), np.int8),
  2089. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2090. Tensor(np.array([2, 3, 4], np.int8))),
  2091. 'skip': ['backward']}),
  2092. ('ScatterMulI32', {
  2093. 'block': ScatterMul((6,), np.int32),
  2094. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2095. Tensor(np.array([2, 3, 4], np.int32))),
  2096. 'skip': ['backward']}),
  2097. ('ScatterMulU8', {
  2098. 'block': ScatterMul((6,), np.uint8),
  2099. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2100. Tensor(np.array([2, 3, 4], np.uint8))),
  2101. 'skip': ['backward']}),
  2102. ('ScatterDivUseLocking', {
  2103. 'block': ScatterDiv((6,), use_locking=True),
  2104. 'desc_inputs': (Tensor(np.array([2], np.int32)),
  2105. Tensor(np.array([2.0], np.float32))),
  2106. 'skip': ['backward']}),
  2107. ('ScatterDivScalar', {
  2108. 'block': ScatterDiv((6,)),
  2109. 'desc_inputs': (Tensor(np.array([2], np.int32)),
  2110. Tensor(np.array([2.0], np.float32))),
  2111. 'skip': ['backward']}),
  2112. ('ScatterDiv2d', {
  2113. 'block': ScatterDiv((3, 4)),
  2114. 'desc_inputs': (Tensor(np.array([[0, 1], [1, 2]], np.int32)),
  2115. Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2]],
  2116. [[3, 3, 3, 3], [4, 4, 4, 4]]], np.float32))),
  2117. 'skip': ['backward']}),
  2118. ('ScatterDivF16', {
  2119. 'block': ScatterDiv((6,), np.float16),
  2120. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2121. Tensor(np.array([2.0, 3.0, 4.0], np.float16))),
  2122. 'skip': ['backward']}),
  2123. ('ScatterDivI8', {
  2124. 'block': ScatterDiv((6,), np.int8),
  2125. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2126. Tensor(np.array([2, 3, 4], np.int8))),
  2127. 'skip': ['backward']}),
  2128. ('ScatterDivU8', {
  2129. 'block': ScatterDiv((6,), np.uint8),
  2130. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2131. Tensor(np.array([2, 3, 4], np.uint8))),
  2132. 'skip': ['backward']}),
  2133. ('ScatterSubUseLocking', {
  2134. 'block': ScatterSub((6,), use_locking=True),
  2135. 'desc_inputs': (Tensor(np.array([2], np.int32)),
  2136. Tensor(np.array([2.0], np.float32))),
  2137. 'skip': ['backward']}),
  2138. ('ScatterSubScalar', {
  2139. 'block': ScatterSub((6,)),
  2140. 'desc_inputs': (Tensor(np.array([2], np.int32)),
  2141. Tensor(np.array([2.0], np.float32))),
  2142. 'skip': ['backward']}),
  2143. ('ScatterSub2d', {
  2144. 'block': ScatterSub((3, 4)),
  2145. 'desc_inputs': (Tensor(np.array([[0, 1], [1, 2]], np.int32)),
  2146. Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2]],
  2147. [[3, 3, 3, 3], [4, 4, 4, 4]]], np.float32))),
  2148. 'skip': ['backward']}),
  2149. ('ScatterSubF16', {
  2150. 'block': ScatterSub((6,), np.float16),
  2151. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2152. Tensor(np.array([2.0, 3.0, 4.0], np.float16))),
  2153. 'skip': ['backward']}),
  2154. ('ScatterSubI32', {
  2155. 'block': ScatterSub((6,), np.int32),
  2156. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2157. Tensor(np.array([2, 3, 4], np.int32))),
  2158. 'skip': ['backward']}),
  2159. ('ScatterSubI8', {
  2160. 'block': ScatterSub((6,), np.int8),
  2161. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2162. Tensor(np.array([2, 3, 4], np.int8))),
  2163. 'skip': ['backward']}),
  2164. ('ScatterSubU8', {
  2165. 'block': ScatterSub((6,), np.uint8),
  2166. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2167. Tensor(np.array([1, 1, 0], np.uint8))),
  2168. 'skip': ['backward']}),
  2169. ('SmoothL1Loss', {
  2170. 'block': P.SmoothL1Loss(),
  2171. 'desc_inputs': [[256, 4], [256, 4]],
  2172. 'desc_bprop': [[256, 4]]}),
  2173. ('IOU', {
  2174. 'block': P.IOU(),
  2175. 'desc_inputs': [Tensor(np.ones((256, 4), np.float16)), Tensor(np.ones((128, 4), np.float16))],
  2176. 'desc_bprop': [convert([128, 256], np.float16)]}),
  2177. ('Summary', {
  2178. 'block': SummaryNet(),
  2179. 'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
  2180. Tensor(np.array([1.2]).astype(np.float32))],
  2181. 'skip': ['backward']}),
  2182. ('HistogramSummary', {
  2183. 'block': HistogramSummaryNet(),
  2184. 'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
  2185. Tensor(np.array([1.2]).astype(np.float32))],
  2186. 'skip': ['backward']}),
  2187. ('PopulationCount', {
  2188. 'block': P.PopulationCount(),
  2189. 'desc_inputs': [Tensor(np.array([1, 2, 3]).astype(np.int16))],
  2190. 'skip': ['backward']}),
  2191. ('BasicLSTMCellNet', {
  2192. 'block': BasicLSTMCellNet(),
  2193. 'desc_inputs': [Tensor(np.random.rand(1, 32).astype(np.float16)),
  2194. Tensor(np.random.rand(1, 64).astype(np.float16)),
  2195. Tensor(np.random.rand(1, 64).astype(np.float16)),
  2196. Tensor(np.random.rand(96, 256).astype(np.float16)),
  2197. Tensor(np.random.rand(256, ).astype(np.float16))],
  2198. 'desc_bprop': [Tensor(np.random.rand(1, 64).astype(np.float16)),
  2199. Tensor(np.random.rand(1, 64).astype(np.float16)),
  2200. Tensor(np.random.rand(1, 64).astype(np.float16)),
  2201. Tensor(np.random.rand(1, 64).astype(np.float16)),
  2202. Tensor(np.random.rand(1, 64).astype(np.float16))]}),
  2203. ]
  2204. test_case_quant_ops = [
  2205. ('Quant_1', {
  2206. 'block': inner.Quant(0.5, 0.0, False, "Round"),
  2207. 'desc_inputs': [Tensor(np.random.rand(1, 2, 4, 4), mstype.float32)],
  2208. 'skip': ['backward']}),
  2209. ('Quant_2', {
  2210. 'block': inner.Quant(80.0, 10.0, True, "Round"),
  2211. 'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)],
  2212. 'skip': ['backward']}),
  2213. ('Quant_3', {
  2214. 'block': inner.Quant(80.0, 0.0, False, "Floor"),
  2215. 'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)],
  2216. 'skip': ['backward']}),
  2217. ('Quant_4', {
  2218. 'block': inner.Quant(80.0, 0.0, False, "Ceil"),
  2219. 'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)],
  2220. 'skip': ['backward']}),
  2221. ('Quant_5', {
  2222. 'block': inner.Quant(80.0, 0.0, False, "Trunc"),
  2223. 'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)],
  2224. 'skip': ['backward']}),
  2225. ('Quant_6', {
  2226. 'block': inner.Quant(-80.0, 10.0, False, "Round"),
  2227. 'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)],
  2228. 'skip': ['backward']}),
  2229. ('Quant_7', {
  2230. 'block': inner.Quant(80.0, -10.0, False, "Round"),
  2231. 'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)],
  2232. 'skip': ['backward']}),
  2233. ('Quant_8', {
  2234. 'block': inner.Quant(80.0, 10.0, False, "Round"),
  2235. 'desc_inputs': [Tensor([100.0, 200.0], mstype.float16)],
  2236. 'skip': ['backward']}),
  2237. ]
  2238. test_case_lists = [test_case_nn_ops, test_case_math_ops, test_case_array_ops, test_case_other_ops, test_case_quant_ops]
  2239. test_case = functools.reduce(lambda x, y: x + y, test_case_lists)
  2240. # use -k to select certain testcast
  2241. # pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
  2242. test_exec_case = test_case
  2243. test_backward_exec_case = filter(lambda x: 'skip' not in x[1] or 'backward' not in x[1]['skip'], test_case)
  2244. @non_graph_engine
  2245. @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
  2246. def test_exec():
  2247. context.set_context(mode=context.GRAPH_MODE)
  2248. return test_exec_case
  2249. @mindspore_test(pipeline_for_compile_grad_ge_graph_for_case_by_case_config)
  2250. def test_backward_exec():
  2251. context.set_context(mode=context.GRAPH_MODE)
  2252. return test_backward_exec_case
  2253. raise_set = [
  2254. ('Cast_Error', {
  2255. 'block': (P.Cast(), {'exception': TypeError}),
  2256. 'desc_const': [mstype.int32],
  2257. 'desc_inputs': ['wrong input'],
  2258. 'desc_bprop': [Tensor(np.ones((2, 3, 3, 5)).astype(np.int32))]}),
  2259. ('Maximum_Error', {
  2260. 'block': (P.Maximum(), {'exception': TypeError}),
  2261. 'desc_const': [(1, 2, 3)],
  2262. 'desc_inputs': [[2, 3, 3, 5]],
  2263. 'desc_bprop': [[2, 3, 3, 5]]}),
  2264. ('Shape_error', {
  2265. 'block': (P.Shape(), {'exception': TypeError}),
  2266. 'desc_inputs': [(64, 1)],
  2267. 'desc_bprop': [[64]]}),
  2268. ('Flatten_Error', {
  2269. 'block': (NetForFlatten0D(), {'exception': ValueError}),
  2270. 'desc_inputs': [Tensor(np.array(0).astype(np.int32))],
  2271. 'desc_bprop': [Tensor(np.array(0).astype(np.int32))]}),
  2272. ('ScatterNdUpdate', {
  2273. 'block': (P.ScatterNdUpdate(), {'exception': TypeError}),
  2274. 'desc_inputs': (Tensor(np.ones((2, 3), np.float32)),
  2275. Tensor(np.ones((2, 2), np.float32)),
  2276. Tensor(np.ones((2,), np.float32))),
  2277. 'desc_bprop': [[2, 3]]}),
  2278. ('PReLU', {
  2279. 'block': (P.PReLU(), {'exception': ValueError}),
  2280. 'desc_inputs': [[2], [1]],
  2281. 'desc_bprop': [[1]]}),
  2282. ('SSIM', {
  2283. 'block': (nn.SSIM(), {'exception': ValueError}),
  2284. 'desc_inputs': [Tensor(np.ones((1, 3, 8, 8)), mstype.float32),
  2285. Tensor(np.ones((1, 3, 8, 8)), mstype.float32)]})
  2286. ]
  2287. @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
  2288. def test_check_exception():
  2289. return raise_set