| @@ -98,6 +98,7 @@ static std::map<string, string> tbe_func_adapter_map = { | |||
| {"n_ms_with_mask", "nms_with_mask"}, | |||
| {"square_sum_all", "square_sum_all"}, | |||
| {"cum_sum", "cumsum_d"}, | |||
| {"inv_grad", "inv_grad"}, | |||
| {"apply_rms_prop", "apply_rms_prop_d"}, | |||
| {"cum_prod", "cumprod_d"}, | |||
| {"reduce_all", "reduce_all_d"}, | |||
| @@ -1025,3 +1025,14 @@ def get_bprop_atanh(self): | |||
| dx = div(1, tmp) * dout | |||
| return (dx,) | |||
| return bprop | |||
| @bprop_getters.register(P.Inv) | |||
| def get_bprop_inv(self): | |||
| """Grad definition for 'Inv' operation""" | |||
| inv_grad = G.InvGrad() | |||
| def bprop(x, out, dout): | |||
| dx = inv_grad(x, dout) | |||
| return (dx,) | |||
| return bprop | |||
| @@ -233,6 +233,9 @@ from .atan_grad import _atan_grad_tbe | |||
| from .atanh import _atanh_tbe | |||
| from .cosh import _cosh_tbe | |||
| from .sinh import _sinh_tbe | |||
| from .inv import _inv_tbe | |||
| from .inv_grad import _inv_grad_tbe | |||
| from .invert import _invert_tbe | |||
| from .basic_lstm_cell import _basic_lstm_cell_tbe | |||
| from .basic_lstm_cell_c_state_grad import _basic_lstm_cell_c_state_grad_tbe | |||
| from .basic_lstm_cell_weight_grad import _basic_lstm_cell_weight_grad_tbe | |||
| @@ -0,0 +1,39 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Inv op""" | |||
| from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType | |||
| inv_op_info = TBERegOp("Inv") \ | |||
| .fusion_type("OPAQUE") \ | |||
| .async_flag(False) \ | |||
| .binfile_name("inv.so") \ | |||
| .compute_cost(10) \ | |||
| .kernel_name("inv") \ | |||
| .partial_flag(True) \ | |||
| .input(0, "x", False, "required", "all") \ | |||
| .output(0, "y", False, "required", "all") \ | |||
| .dtype_format(DataType.I32_Default, DataType.I32_Default) \ | |||
| .dtype_format(DataType.F32_Default, DataType.F32_Default) \ | |||
| .dtype_format(DataType.F16_Default, DataType.F16_Default) \ | |||
| .dtype_format(DataType.I8_Default, DataType.I8_Default) \ | |||
| .dtype_format(DataType.U8_Default, DataType.U8_Default) \ | |||
| .get_op_info() | |||
| @op_info_register(inv_op_info) | |||
| def _inv_tbe(): | |||
| """Inv TBE register""" | |||
| return | |||
| @@ -0,0 +1,39 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """InvGrad op""" | |||
| from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType | |||
| inv_grad_op_info = TBERegOp("InvGrad") \ | |||
| .fusion_type("ELEMWISE") \ | |||
| .async_flag(False) \ | |||
| .binfile_name("inv_grad.so") \ | |||
| .compute_cost(10) \ | |||
| .kernel_name("inv_grad") \ | |||
| .partial_flag(True) \ | |||
| .input(0, "x", False, "required", "all") \ | |||
| .input(1, "grad", False, "required", "all") \ | |||
| .output(0, "y", False, "required", "all") \ | |||
| .dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.F16_Default) \ | |||
| .dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \ | |||
| .dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \ | |||
| .dtype_format(DataType.I8_Default, DataType.I8_Default, DataType.I8_Default) \ | |||
| .get_op_info() | |||
| @op_info_register(inv_grad_op_info) | |||
| def _inv_grad_tbe(): | |||
| """InvGrad TBE register""" | |||
| return | |||
| @@ -0,0 +1,36 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Invert op""" | |||
| from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType | |||
| invert_op_info = TBERegOp("Invert") \ | |||
| .fusion_type("OPAQUE") \ | |||
| .async_flag(False) \ | |||
| .binfile_name("invert.so") \ | |||
| .compute_cost(10) \ | |||
| .kernel_name("invert") \ | |||
| .partial_flag(True) \ | |||
| .input(0, "x", False, "required", "all") \ | |||
| .output(0, "y", False, "required", "all") \ | |||
| .dtype_format(DataType.I16_Default, DataType.I16_Default) \ | |||
| .dtype_format(DataType.U16_Default, DataType.U16_Default) \ | |||
| .get_op_info() | |||
| @op_info_register(invert_op_info) | |||
| def _invert_tbe(): | |||
| """Invert TBE register""" | |||
| return | |||
| @@ -41,7 +41,7 @@ from .control_ops import ControlDepend, GeSwitch, Merge | |||
| from .inner_ops import ScalarCast | |||
| from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AssignAdd, AssignSub, Atan2, BatchMatMul, BitwiseAnd, BitwiseOr, | |||
| BitwiseXor, | |||
| BitwiseXor, Inv, Invert, | |||
| ReduceMax, ReduceMin, ReduceMean, ReduceSum, ReduceAll, ReduceProd, CumProd, | |||
| Cos, Div, DivNoNan, Equal, EqualCount, Exp, Expm1, Erf, Erfc, Floor, FloorDiv, FloorMod, Ceil, | |||
| Acosh, Greater, GreaterEqual, Less, LessEqual, Log, Log1p, LogicalAnd, | |||
| @@ -141,6 +141,8 @@ __all__ = [ | |||
| 'RealDiv', | |||
| 'Div', | |||
| 'DivNoNan', | |||
| 'Inv', | |||
| 'Invert', | |||
| 'TruncatedNormal', | |||
| 'Fill', | |||
| 'OnesLike', | |||
| @@ -1276,3 +1276,20 @@ class BasicLSTMCellInputGrad(PrimitiveWithInfer): | |||
| validator.check_type_name("dgate", dgate_dtype, [mstype.float16, mstype.float32], self.name) | |||
| validator.check_type_name("w", w_dtype, [mstype.float16, mstype.float32], self.name) | |||
| return (dgate_dtype, dgate_dtype) | |||
| class InvGrad(PrimitiveWithInfer): | |||
| """Computes gradients for inv operation.""" | |||
| @prim_attr_register | |||
| def __init__(self): | |||
| pass | |||
| def infer_shape(self, x, grad): | |||
| validator.check("x_shape", x, "grad_shape", grad, Rel.EQ, self.name) | |||
| return x | |||
| def infer_dtype(self, x, grad): | |||
| validator.check_type_name("dgate", x, [mstype.float16, mstype.float32, mstype.int32, mstype.int8], self.name) | |||
| validator.check_type_name("grad", grad, [mstype.float16, mstype.float32, mstype.int32, mstype.int8], self.name) | |||
| return x | |||
| @@ -2597,3 +2597,63 @@ class BesselI1e(PrimitiveWithInfer): | |||
| def infer_dtype(self, x): | |||
| validator.check_tensor_type_same({'x': x}, mstype.number_type, self.name) | |||
| return x | |||
| class Inv(PrimitiveWithInfer): | |||
| """ | |||
| Computes Inv(Reciprocal) of input tensor element-wise. | |||
| Inputs: | |||
| - **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. | |||
| Outputs: | |||
| Tensor, has the same shape as `input_x`. | |||
| Examples: | |||
| >>> inv = P.Inv() | |||
| >>> input_x = Tensor(np.array([0.25, 0.4, 0.31, 0.52]), mindspore.float32) | |||
| >>> output = inv(input_x) | |||
| [4., 2.5, 3.2258065, 1.923077] | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self): | |||
| pass | |||
| def infer_shape(self, x_shape): | |||
| return x_shape | |||
| def infer_dtype(self, x_dtype): | |||
| validator.check_tensor_type_same({'x_dtype': x_dtype}, [mstype.float16, mstype.float32, | |||
| mstype.int32, mstype.int8, | |||
| mstype.uint8], self.name) | |||
| return x_dtype | |||
| class Invert(PrimitiveWithInfer): | |||
| """ | |||
| Flips all bits of input tensor element-wise. | |||
| Inputs: | |||
| - **input_x** (Tensor[int16], Tensor[uint16]) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. | |||
| Outputs: | |||
| Tensor, has the same shape as `input_x`. | |||
| Examples: | |||
| >>> invert = P.Invert() | |||
| >>> input_x = Tensor(np.array([25, 4, 13, 9]), mindspore.int16) | |||
| >>> output = invert(input_x) | |||
| [-26, -5, -14, -10] | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self): | |||
| pass | |||
| def infer_shape(self, x_shape): | |||
| return x_shape | |||
| def infer_dtype(self, x_dtype): | |||
| validator.check_tensor_type_same({'x_dtype': x_dtype}, [mstype.int16, mstype.uint16], self.name) | |||
| return x_dtype | |||
| @@ -750,6 +750,15 @@ test_case_math_ops = [ | |||
| 'block': P.Sinh(), | |||
| 'desc_inputs': [[3, 4, 5]], | |||
| 'desc_bprop': [[3, 4, 5]]}), | |||
| ('Inv', { | |||
| 'block': P.Inv(), | |||
| 'desc_inputs': [[21, 9, 12, 5]], | |||
| 'desc_bprop': [[21, 9, 12, 5]]}), | |||
| ('Invert', { | |||
| 'block': P.Invert(), | |||
| 'desc_inputs': [Tensor(np.array([[24, 4, 13, 9], [1, 5, 10, 8]]).astype(np.int16))], | |||
| 'desc_bprop': [], | |||
| 'skip': ['backward']}), | |||
| ] | |||
| test_case_nn_ops = [ | |||