| @@ -25,3 +25,4 @@ from .squeeze import _squeeze_aicpu | |||
| from .expand_dims import _expand_dims_aicpu | |||
| from .random_choice_with_mask import _random_choice_with_mask_aicpu | |||
| from .pack import _pack_aicpu | |||
| from .normal import _normal_aicpu | |||
| @@ -0,0 +1,33 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Normal op""" | |||
| from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType | |||
| normal_op_info = AiCPURegOp("Normal") \ | |||
| .fusion_type("OPAQUE") \ | |||
| .input(0, "shape", "required") \ | |||
| .input(1, "mean", "required") \ | |||
| .input(2, "stddev", "required") \ | |||
| .output(0, "y", "required") \ | |||
| .attr("seed", "int") \ | |||
| .dtype_format(DataType.I32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \ | |||
| .dtype_format(DataType.I32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW) \ | |||
| .get_op_info() | |||
| @op_info_register(normal_op_info) | |||
| def _normal_aicpu(): | |||
| """Normal AiCPU register""" | |||
| return | |||
| @@ -53,7 +53,7 @@ from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AssignAdd, AssignSub, Atan2 | |||
| Sin, Sqrt, Rsqrt, BesselI0e, BesselI1e, | |||
| Square, Sub, TensorAdd, Sign, Round, SquareSumAll, Atan, Atanh, Cosh, Sinh) | |||
| from .random_ops import (RandomChoiceWithMask) | |||
| from .random_ops import (RandomChoiceWithMask, Normal) | |||
| from .nn_ops import (LSTM, SGD, Adam, SparseApplyAdam, SparseApplyLazyAdam, ApplyMomentum, BatchNorm, | |||
| BiasAdd, Conv2D, | |||
| DepthwiseConv2dNative, | |||
| @@ -163,6 +163,7 @@ __all__ = [ | |||
| 'HSigmoid', | |||
| 'Tanh', | |||
| 'RandomChoiceWithMask', | |||
| 'Normal', | |||
| 'ResizeBilinear', | |||
| 'ScalarSummary', | |||
| 'ImageSummary', | |||
| @@ -64,3 +64,47 @@ class RandomChoiceWithMask(PrimitiveWithInfer): | |||
| def infer_dtype(self, x_dtype): | |||
| validator.check_tensor_type_same({'x': x_dtype}, [mstype.bool_], self.name) | |||
| return (mstype.int32, mstype.bool_) | |||
| class Normal(PrimitiveWithInfer): | |||
| """ | |||
| Generates random samples from a normal(Gaussian) distribution. | |||
| Args: | |||
| seed (int): Random seed. Default: 0. | |||
| Inputs: | |||
| - **shape** (tuple[int]) - The shape of output tensor. Only constant value is allowed. | |||
| - **mean** (Tensor) - The mean of the distribution, with float32 data type. | |||
| - **stddev** (Tensor) - The standard deviation of the distribution, with float32 data type. | |||
| Outputs: | |||
| Tensor, with the given shape from the specific distribution and float32 data type. | |||
| Examples: | |||
| >>> normal = P.Normal() | |||
| >>> mean = Tensor(0., mstype.float32) | |||
| >>> stddev = Tensor(1., mstype.float32) | |||
| >>> out = normal((32, 3, 3), mean, stddev) | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self, seed=0): | |||
| """Init Normal""" | |||
| validator.check_value_type("seed", seed, [int], self.name) | |||
| def __infer__(self, shape, mean, stddev): | |||
| shape_value = shape["value"] | |||
| if shape_value is None: | |||
| raise ValueError(f"For {self.name}, shape must be const.") | |||
| validator.check_value_type("shape", shape_value, [tuple], self.name) | |||
| for i, shape_i in enumerate(shape_value): | |||
| validator.check_integer("shape[%d]" % i, shape_i, 0, Rel.GE, self.name) | |||
| validator.check_tensor_type_same({"mean": mean["dtype"]}, [mstype.float32], self.name) | |||
| validator.check_tensor_type_same({"stddev": stddev["dtype"]}, [mstype.float32], self.name) | |||
| out = {"shape": shape_value, | |||
| "dtype": mstype.float32, | |||
| "value": None} | |||
| return out | |||
| @@ -0,0 +1,43 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore.ops import operations as P | |||
| from mindspore.common import Tensor | |||
| from mindspore.common import dtype as mstype | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") | |||
| class Net(nn.Cell): | |||
| def __init__(self, shape=None, mean=0.0, stddev=1.0, seed=0): | |||
| super(Net, self).__init__() | |||
| self._mean = Tensor(mean, mstype.float32) | |||
| self._stddev = Tensor(stddev, mstype.float32) | |||
| self._normal = P.Normal(seed=seed) | |||
| self._shape = shape | |||
| def construct(self): | |||
| return self._normal(self._shape, self._mean, self._stddev) | |||
| def test_net_3x2x4(): | |||
| mean = 0.0 | |||
| stddev = 1.0 | |||
| seed = 0 | |||
| net = Net((3, 2, 4), mean, stddev, seed) | |||
| out = net() | |||
| assert out.shape == (3, 2, 4) | |||
| @@ -399,6 +399,19 @@ class InplaceSubNet(nn.Cell): | |||
| return out | |||
| class NormalNet(nn.Cell): | |||
| def __init__(self, shape=None, mean=0.0, stddev=1.0, seed=0): | |||
| super(NormalNet, self).__init__() | |||
| self.normal = P.Normal(seed=seed) | |||
| self.shape = shape | |||
| self.mean = Tensor(mean, mstype.float32) | |||
| self.stddev = Tensor(stddev, mstype.float32) | |||
| def construct(self): | |||
| out = self.normal(self.shape, self.mean, self.stddev) | |||
| return out | |||
| test_case_math_ops = [ | |||
| ('BitwiseAnd', { | |||
| 'block': P.BitwiseAnd(), | |||
| @@ -895,6 +908,10 @@ test_case_math_ops = [ | |||
| 'desc_inputs': [Tensor([-1.0, 0.0, 1.5, 2.0, 5.0, 15], mstype.float16), Tensor([0.0, 5.0], mstype.float16)], | |||
| 'desc_bprop': [], | |||
| 'skip': ['backward']}), | |||
| ('Normal', { | |||
| 'block': NormalNet((3, 2, 4), 0.0, 1.0, 0), | |||
| 'desc_inputs': [], | |||
| 'skip': ['backward']}), | |||
| ] | |||
| test_case_nn_ops = [ | |||