|
|
|
@@ -154,14 +154,14 @@ ATTR_MAP(BatchNorm) = {{"data_format", ATTR_DESC(data_format, AnyTraits<std::str |
|
|
|
OUTPUT_MAP(BatchNorm) = {{0, OUTPUT_DESC(y)}, |
|
|
|
{1, OUTPUT_DESC(batch_mean)}, |
|
|
|
{2, OUTPUT_DESC(batch_variance)}, |
|
|
|
{3, OUTPUT_DESC(reserve_space_1)}, |
|
|
|
{4, OUTPUT_DESC(reserve_space_2)}, |
|
|
|
{5, OUTPUT_DESC(reserve_space_3)}}; |
|
|
|
{4, OUTPUT_DESC(reserve_space_2)}}; |
|
|
|
|
|
|
|
// BatchNormGrad |
|
|
|
INPUT_MAP(BatchNormGrad) = {{1, INPUT_DESC(y_backprop)}, {2, INPUT_DESC(x)}, |
|
|
|
{3, INPUT_DESC(scale)}, {4, INPUT_DESC(reserve_space_1)}, |
|
|
|
{5, INPUT_DESC(reserve_space_2)}, {6, INPUT_DESC(reserve_space_3)}}; |
|
|
|
INPUT_MAP(BatchNormGrad) = {{1, INPUT_DESC(y_backprop)}, |
|
|
|
{2, INPUT_DESC(x)}, |
|
|
|
{3, INPUT_DESC(scale)}, |
|
|
|
{4, INPUT_DESC(reserve_space_1)}, |
|
|
|
{5, INPUT_DESC(reserve_space_2)}}; |
|
|
|
ATTR_MAP(BatchNormGrad) = {{"data_format", ATTR_DESC(data_format, AnyTraits<std::string>())}, |
|
|
|
{"epsilon", ATTR_DESC(epsilon, AnyTraits<float>())}, |
|
|
|
{"is_training", ATTR_DESC(is_training, AnyTraits<bool>())}}; |
|
|
|
@@ -266,11 +266,6 @@ INPUT_MAP(GatherV2) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(indices)}, {3, INPUT_D |
|
|
|
ATTR_MAP(GatherV2) = EMPTY_ATTR_MAP; |
|
|
|
OUTPUT_MAP(GatherV2) = {{0, OUTPUT_DESC(y)}}; |
|
|
|
|
|
|
|
// ReduceSum |
|
|
|
INPUT_MAP(ReduceSum) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(axes)}}; |
|
|
|
ATTR_MAP(ReduceSum) = {{"keep_dims", ATTR_DESC(keep_dims, AnyTraits<bool>())}}; |
|
|
|
OUTPUT_MAP(ReduceSum) = {{0, OUTPUT_DESC(y)}}; |
|
|
|
|
|
|
|
// ReduceSumD |
|
|
|
INPUT_MAP(ReduceSumD) = {{1, INPUT_DESC(x)}}; |
|
|
|
INPUT_ATTR_MAP(ReduceSumD) = { |
|
|
|
@@ -451,17 +446,17 @@ INPUT_MAP(Iou) = {{1, INPUT_DESC(bboxes)}, {2, INPUT_DESC(gtboxes)}}; |
|
|
|
ATTR_MAP(Iou) = {{"mode", ATTR_DESC(mode, AnyTraits<std::string>())}}; |
|
|
|
OUTPUT_MAP(Iou) = {{0, OUTPUT_DESC(overlap)}}; |
|
|
|
|
|
|
|
// ResizeNearestNeighborD |
|
|
|
INPUT_MAP(ResizeNearestNeighborD) = {{1, INPUT_DESC(x)}}; |
|
|
|
ATTR_MAP(ResizeNearestNeighborD) = { |
|
|
|
// ResizeNearestNeighborV2D |
|
|
|
INPUT_MAP(ResizeNearestNeighborV2D) = {{1, INPUT_DESC(x)}}; |
|
|
|
ATTR_MAP(ResizeNearestNeighborV2D) = { |
|
|
|
{"size", ATTR_DESC(size, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())}, |
|
|
|
{"align_corners", ATTR_DESC(align_corners, AnyTraits<bool>())}}; |
|
|
|
OUTPUT_MAP(ResizeNearestNeighborD) = {{0, OUTPUT_DESC(y)}}; |
|
|
|
OUTPUT_MAP(ResizeNearestNeighborV2D) = {{0, OUTPUT_DESC(y)}}; |
|
|
|
|
|
|
|
// ResizeNearestNeighborGrad |
|
|
|
INPUT_MAP(ResizeNearestNeighborGrad) = {{1, INPUT_DESC(grads)}, {2, INPUT_DESC(size)}}; |
|
|
|
ATTR_MAP(ResizeNearestNeighborGrad) = {{"align_corners", ATTR_DESC(align_corners, AnyTraits<bool>())}}; |
|
|
|
OUTPUT_MAP(ResizeNearestNeighborGrad) = {{0, OUTPUT_DESC(y)}}; |
|
|
|
// ResizeNearestNeighborV2Grad |
|
|
|
INPUT_MAP(ResizeNearestNeighborV2Grad) = {{1, INPUT_DESC(grads)}, {2, INPUT_DESC(size)}}; |
|
|
|
ATTR_MAP(ResizeNearestNeighborV2Grad) = {{"align_corners", ATTR_DESC(align_corners, AnyTraits<bool>())}}; |
|
|
|
OUTPUT_MAP(ResizeNearestNeighborV2Grad) = {{0, OUTPUT_DESC(y)}}; |
|
|
|
|
|
|
|
// ApplyAdam |
|
|
|
INPUT_MAP(ApplyAdam) = {{1, INPUT_DESC(var)}, {2, INPUT_DESC(m)}, {3, INPUT_DESC(v)}, |
|
|
|
@@ -486,17 +481,17 @@ INPUT_MAP(Relu6Grad) = {{1, INPUT_DESC(gradients)}, {2, INPUT_DESC(features)}}; |
|
|
|
ATTR_MAP(Relu6Grad) = EMPTY_ATTR_MAP; |
|
|
|
OUTPUT_MAP(Relu6Grad) = {{0, OUTPUT_DESC(backprops)}}; |
|
|
|
|
|
|
|
// ResizeBilinearGrad |
|
|
|
INPUT_MAP(ResizeBilinearGrad) = {{1, INPUT_DESC(grads)}, {2, INPUT_DESC(original_image)}}; |
|
|
|
ATTR_MAP(ResizeBilinearGrad) = {{"align_corners", ATTR_DESC(align_corners, AnyTraits<bool>())}}; |
|
|
|
OUTPUT_MAP(ResizeBilinearGrad) = {{0, OUTPUT_DESC(y)}}; |
|
|
|
// ResizeBilinearV2Grad |
|
|
|
INPUT_MAP(ResizeBilinearV2Grad) = {{1, INPUT_DESC(grads)}, {2, INPUT_DESC(original_image)}}; |
|
|
|
ATTR_MAP(ResizeBilinearV2Grad) = {{"align_corners", ATTR_DESC(align_corners, AnyTraits<bool>())}}; |
|
|
|
OUTPUT_MAP(ResizeBilinearV2Grad) = {{0, OUTPUT_DESC(y)}}; |
|
|
|
|
|
|
|
// ResizeBilinearD |
|
|
|
INPUT_MAP(ResizeBilinearD) = {{1, INPUT_DESC(x)}}; |
|
|
|
ATTR_MAP(ResizeBilinearD) = { |
|
|
|
// ResizeBilinearV2D |
|
|
|
INPUT_MAP(ResizeBilinearV2D) = {{1, INPUT_DESC(x)}}; |
|
|
|
ATTR_MAP(ResizeBilinearV2D) = { |
|
|
|
{"size", ATTR_DESC(size, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())}, |
|
|
|
{"align_corners", ATTR_DESC(align_corners, AnyTraits<bool>())}}; |
|
|
|
OUTPUT_MAP(ResizeBilinearD) = {{0, OUTPUT_DESC(y)}}; |
|
|
|
OUTPUT_MAP(ResizeBilinearV2D) = {{0, OUTPUT_DESC(y)}}; |
|
|
|
|
|
|
|
// ZerosLike |
|
|
|
INPUT_MAP(ZerosLike) = {{1, INPUT_DESC(x)}}; |
|
|
|
@@ -609,10 +604,12 @@ ATTR_MAP(ArgMinWithValue) = {{"axis", ATTR_DESC(dimension, AnyTraits<int>())}, |
|
|
|
{"keep_dims", ATTR_DESC(keep_dims, AnyTraits<bool>())}}; |
|
|
|
OUTPUT_MAP(ArgMinWithValue) = {{0, OUTPUT_DESC(indice)}, {1, OUTPUT_DESC(values)}}; |
|
|
|
|
|
|
|
// ReduceAll |
|
|
|
INPUT_MAP(ReduceAll) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(axes)}}; |
|
|
|
ATTR_MAP(ReduceAll) = {{"keep_dims", ATTR_DESC(keep_dims, AnyTraits<bool>())}}; |
|
|
|
OUTPUT_MAP(ReduceAll) = {{0, OUTPUT_DESC(y)}} |
|
|
|
// ReduceAllD |
|
|
|
INPUT_MAP(ReduceAllD) = {{1, INPUT_DESC(x)}}; |
|
|
|
INPUT_ATTR_MAP(ReduceAllD) = { |
|
|
|
{2, ATTR_DESC(axis, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())}}; |
|
|
|
ATTR_MAP(ReduceAllD) = {{"keep_dims", ATTR_DESC(keep_dims, AnyTraits<bool>())}}; |
|
|
|
OUTPUT_MAP(ReduceAllD) = {{0, OUTPUT_DESC(y)}}; |
|
|
|
|
|
|
|
// ReduceMeanD |
|
|
|
INPUT_MAP(ReduceMeanD) = {{1, INPUT_DESC(x)}}; |
|
|
|
|