|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216 |
- # Contents
-
- - [ResNet50 Description](#resnet50-description)
- - [Model Architecture](#model-architecture)
- - [Dataset](#dataset)
- - [Features](#features)
- - [Mixed Precision](#mixed-precision)
- - [Environment Requirements](#environment-requirements)
- - [Script Description](#script-description)
- - [Script and Sample Code](#script-and-sample-code)
- - [Script Parameters](#script-parameters)
- - [Training Process](#training-process)
- - [Evaluation Process](#evaluation-process)
- - [Model Description](#model-description)
- - [Performance](#performance)
- - [Evaluation Performance](#evaluation-performance)
- - [Inference Performance](#inference-performance)
- - [Description of Random Situation](#description-of-random-situation)
- - [ModelZoo Homepage](#modelzoo-homepage)
-
- # [ResNet50 Description](#contents)
-
- ResNet-50 is a convolutional neural network that is 50 layers deep, which can classify ImageNet image to 1000 object categories with 76% accuracy.
-
- [Paper](https://arxiv.org/abs/1512.03385): Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun."Deep Residual Learning for Image Recognition." He, Kaiming , et al. "Deep Residual Learning for Image Recognition." IEEE Conference on Computer Vision & Pattern Recognition IEEE Computer Society, 2016.
-
- This is the quantitative network of ResNet50.
-
- # [Model Architecture](#contents)
-
- The overall network architecture of Resnet50 is show below:
-
- [Link](https://arxiv.org/pdf/1512.03385.pdf)
-
- # [Dataset](#contents)
-
- Dataset used: [ImageNet2012](http://www.image-net.org/)
-
- - Dataset size 224*224 colorful images in 1000 classes
- - Train:1,281,167 images
- - Test: 50,000 images
- - Data format:jpeg
- - Note:Data will be processed in dataset.py
- - Download the dataset, the directory structure is as follows:
-
- ```python
- └─dataset
- ├─ilsvrc # train dataset
- └─validation_preprocess # evaluate dataset
- ```
-
- # [Features](#contents)
-
- ## [Mixed Precision](#contents)
-
- The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
- For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’.
-
- # [Environment Requirements](#contents)
-
- - Hardware:Ascend
- - Prepare hardware environment with Ascend.
- - Framework
- - [MindSpore](https://www.mindspore.cn/install/en)
- - For more information, please check the resources below:
- - [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
-
- # [Script description](#contents)
-
- ## [Script and sample code](#contents)
-
- ```python
- ├── resnet50_quant
- ├── README.md # descriptions about Resnet50-Quant
- ├── scripts
- │ ├──run_train.sh # shell script for train on Ascend
- │ ├──run_infer.sh # shell script for evaluation on Ascend
- ├── models
- │ ├──resnet_quant.py # define the network model of resnet50-quant
- │ ├──resnet_quant_manual.py # define the manually quantized network model of resnet50-quant
- ├── src
- │ ├──config.py # parameter configuration
- │ ├──dataset.py # creating dataset
- │ ├──launch.py # start python script
- │ ├──lr_generator.py # learning rate config
- │ ├──crossentropy.py # define the crossentropy of resnet50-quant
- ├── train.py # training script
- ├── eval.py # evaluation script
- ├── export.py # export script
-
- ```
-
- ## [Script Parameters](#contents)
-
- Parameters for both training and evaluation can be set in config.py
-
- - config for Resnet50-quant, ImageNet2012 dataset
-
- ```python
- 'class_num': 10 # the number of classes in the dataset
- 'batch_size': 32 # training batch size
- 'loss_scale': 1024 # the initial loss_scale value
- 'momentum': 0.9 # momentum
- 'weight_decay': 1e-4 # weight decay value
- 'epoch_size': 120 # total training epochs
- 'pretrained_epoch_size': 90 # pretraining epochs of resnet50, which is unquantative network of resnet50_quant
- 'data_load_mode': 'original' # the style of loading data into device, support 'original' or 'mindrecord'
- 'save_checkpoint':True # whether save checkpoint file after training finish
- 'save_checkpoint_epochs': 1 # the step from which start to save checkpoint file.
- 'keep_checkpoint_max': 50 # only keep the last keep_checkpoint_max checkpoint
- 'save_checkpoint_path': './' # the absolute full path to save the checkpoint file
- "warmup_epochs": 0 # number of warmup epochs
- 'lr_decay_mode': "cosine" # learning rate decay mode, including steps, steps_decay, cosine or liner
- 'use_label_smooth': True # whether use label smooth
- 'label_smooth_factor': 0.1 # label smooth factor
- 'lr_init': 0 # initial learning rate
- 'lr_max': 0.005 # the max learning rate
- ```
-
- ## [Training process](#contents)
-
- ### Usage
-
- - Ascend: sh run_train.sh Ascend [RANK_TABLE_FILE] [DATASET_PATH] [PRETRAINED_CKPT_PATH]\(optional)
-
- ### Launch
-
- ```bash
- # training example
- Ascend: bash run_train.sh Ascend ~/hccl.json ~/imagenet/train/ ~/pretrained_ckeckpoint
- ```
-
- ### Result
-
- Training result will be stored in the example path. Checkpoints will be stored at `./train/device$i/` by default, and training log will be redirected to `./train/device$i/train.log` like following.
-
- ```bash
- epoch: 1 step: 5004, loss is 4.8995576
- epoch: 2 step: 5004, loss is 3.9235563
- epoch: 3 step: 5004, loss is 3.833077
- epoch: 4 step: 5004, loss is 3.2795618
- epoch: 5 step: 5004, loss is 3.1978393
- ```
-
- ## [Evaluation process](#contents)
-
- ### Usage
-
- You can start training using python or shell scripts. The usage of shell scripts as follows:
-
- - Ascend: sh run_infer.sh Ascend [DATASET_PATH] [CHECKPOINT_PATH]
-
- ### Launch
-
- ```bash
- # infer example
- shell:
- Ascend: sh run_infer.sh Ascend ~/imagenet/val/ ~/train/Resnet50-30_5004.ckpt
- ```
-
- > checkpoint can be produced in training process.
-
- ### Result
-
- Inference result will be stored in the example path, you can find result like the following in `./eval/infer.log`.
-
- ```bash
- result: {'acc': 0.76576314102564111}
- ```
-
- # [Model description](#contents)
-
- ## [Performance](#contents)
-
- ### Evaluation Performance
-
- | Parameters | Ascend |
- | -------------------------- | ----------------------------------------------------------- |
- | Model Version | ResNet50 V1.5 |
- | Resource | Ascend 910; CPU 2.60GHz, 56cores; Memory 314G; OS Euler2.8 |
- | uploaded Date | 06/06/2020 (month/day/year) |
- | MindSpore Version | 0.3.0-alpha |
- | Dataset | ImageNet |
- | Training Parameters | epoch=30(with pretrained) or 120, steps per epoch=5004, batch_size=32 |
- | Optimizer | Momentum |
- | Loss Function | Softmax Cross Entropy |
- | outputs | probability |
- | Loss | 1.8 |
- | Speed | 8pcs: 407 ms/step |
- | Total time | 8pcs: 17 hours(30 epochs with pretrained) |
- | Parameters (M) | 25.5 |
- | Checkpoint for Fine tuning | 197M (.ckpt file) |
- | Scripts | [resnet50-quant script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/resnet50_quant) |
-
- ### Inference Performance
-
- | Parameters | Ascend |
- | ------------------- | --------------------------- |
- | Model Version | ResNet50 V1.5 |
- | Resource | Ascend 910; CPU 2.60GHz, 56cores; Memory 314G; OS Euler2.8 |
- | Uploaded Date | 06/06/2020 (month/day/year) |
- | MindSpore Version | 0.3.0-alpha |
- | Dataset | ImageNet |
- | batch_size | 32 |
- | outputs | probability |
- | Accuracy | ACC1[76.57%] ACC5[92.90%] |
- | Model for inference | 197M (.ckpt file) |
-
- # [Description of Random Situation](#contents)
-
- In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py.
-
- # [ModelZoo Homepage](#contents)
-
- Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|