|
|
|
@@ -46,7 +46,7 @@ Dataset used: [imagenet](http://www.image-net.org/) |
|
|
|
|
|
|
|
## [Mixed Precision](#contents) |
|
|
|
|
|
|
|
The [mixed precision](https://www.mindspore.cn/tutorial/training/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware. |
|
|
|
The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware. |
|
|
|
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’. |
|
|
|
|
|
|
|
# [Environment Requirements](#contents) |
|
|
|
|