Browse Source

removed the useless link of apply form

pull/13892/head
caojiewen 4 years ago
parent
commit
da60f433f1
100 changed files with 269 additions and 270 deletions
  1. +1
    -1
      model_zoo/official/cv/FCN8s/README.md
  2. +65
    -65
      model_zoo/official/cv/centerface/README.md
  3. +1
    -1
      model_zoo/official/cv/cnnctc/README.md
  4. +1
    -1
      model_zoo/official/cv/crnn/README.md
  5. +1
    -1
      model_zoo/official/cv/crnn_seq2seq_ocr/README.md
  6. +4
    -4
      model_zoo/official/cv/ctpn/README.md
  7. +79
    -79
      model_zoo/official/cv/deeplabv3/README.md
  8. +24
    -24
      model_zoo/official/cv/deeplabv3/README_CN.md
  9. +1
    -1
      model_zoo/official/cv/deeptext/README.md
  10. +1
    -1
      model_zoo/official/cv/densenet/README.md
  11. +1
    -1
      model_zoo/official/cv/densenet/README_CN.md
  12. +1
    -1
      model_zoo/official/cv/dpn/README.md
  13. +1
    -1
      model_zoo/official/cv/faster_rcnn/README.md
  14. +1
    -1
      model_zoo/official/cv/faster_rcnn/README_CN.md
  15. +1
    -1
      model_zoo/official/cv/googlenet/README.md
  16. +1
    -1
      model_zoo/official/cv/googlenet/README_CN.md
  17. +1
    -1
      model_zoo/official/cv/inceptionv3/README.md
  18. +1
    -1
      model_zoo/official/cv/inceptionv3/README_CN.md
  19. +1
    -1
      model_zoo/official/cv/inceptionv4/README.md
  20. +1
    -1
      model_zoo/official/cv/maskrcnn/README.md
  21. +1
    -1
      model_zoo/official/cv/maskrcnn/README_CN.md
  22. +1
    -1
      model_zoo/official/cv/maskrcnn_mobilenetv1/README.md
  23. +1
    -1
      model_zoo/official/cv/mobilenetv1/README.md
  24. +1
    -1
      model_zoo/official/cv/mobilenetv2/README.md
  25. +1
    -1
      model_zoo/official/cv/mobilenetv2/README_CN.md
  26. +1
    -1
      model_zoo/official/cv/mobilenetv2_quant/README_CN.md
  27. +1
    -1
      model_zoo/official/cv/mobilenetv2_quant/Readme.md
  28. +1
    -1
      model_zoo/official/cv/openpose/README.md
  29. +1
    -1
      model_zoo/official/cv/psenet/README.md
  30. +1
    -1
      model_zoo/official/cv/psenet/README_CN.md
  31. +1
    -1
      model_zoo/official/cv/resnet/README.md
  32. +1
    -1
      model_zoo/official/cv/resnet/README_CN.md
  33. +1
    -1
      model_zoo/official/cv/resnet152/README-CN.md
  34. +1
    -1
      model_zoo/official/cv/resnet50_quant/README.md
  35. +1
    -1
      model_zoo/official/cv/resnet50_quant/README_CN.md
  36. +1
    -1
      model_zoo/official/cv/resnet_thor/README.md
  37. +1
    -1
      model_zoo/official/cv/resnet_thor/README_CN.md
  38. +2
    -3
      model_zoo/official/cv/resnext101/README_CN.md
  39. +1
    -1
      model_zoo/official/cv/resnext50/README.md
  40. +1
    -1
      model_zoo/official/cv/resnext50/README_CN.md
  41. +1
    -1
      model_zoo/official/cv/retinanet/README_CN.md
  42. +1
    -1
      model_zoo/official/cv/shufflenetv1/README_CN.md
  43. +1
    -1
      model_zoo/official/cv/simple_pose/README.md
  44. +1
    -1
      model_zoo/official/cv/squeezenet/README.md
  45. +1
    -1
      model_zoo/official/cv/tinydarknet/README.md
  46. +1
    -1
      model_zoo/official/cv/tinydarknet/README_CN.md
  47. +1
    -1
      model_zoo/official/cv/unet/README.md
  48. +1
    -1
      model_zoo/official/cv/unet/README_CN.md
  49. +1
    -1
      model_zoo/official/cv/vgg16/README.md
  50. +1
    -1
      model_zoo/official/cv/vgg16/README_CN.md
  51. +1
    -1
      model_zoo/official/cv/warpctc/README.md
  52. +1
    -1
      model_zoo/official/cv/warpctc/README_CN.md
  53. +1
    -1
      model_zoo/official/cv/xception/README.md
  54. +1
    -1
      model_zoo/official/cv/yolov3_darknet53/README.md
  55. +1
    -1
      model_zoo/official/cv/yolov3_darknet53/README_CN.md
  56. +1
    -1
      model_zoo/official/cv/yolov3_darknet53_quant/README.md
  57. +1
    -1
      model_zoo/official/cv/yolov3_darknet53_quant/README_CN.md
  58. +1
    -1
      model_zoo/official/cv/yolov3_resnet18/README.md
  59. +1
    -1
      model_zoo/official/cv/yolov3_resnet18/README_CN.md
  60. +1
    -1
      model_zoo/official/cv/yolov4/README.md
  61. +1
    -1
      model_zoo/official/gnn/gcn/README.md
  62. +1
    -1
      model_zoo/official/gnn/gcn/README_CN.md
  63. +1
    -1
      model_zoo/official/nlp/bert/README.md
  64. +1
    -1
      model_zoo/official/nlp/bert/README_CN.md
  65. +1
    -1
      model_zoo/official/nlp/bert_thor/README.md
  66. +1
    -1
      model_zoo/official/nlp/bert_thor/README_CN.md
  67. +1
    -1
      model_zoo/official/nlp/fasttext/README.md
  68. +1
    -1
      model_zoo/official/nlp/gnmt_v2/README.md
  69. +1
    -1
      model_zoo/official/nlp/gpt/README.md
  70. +1
    -1
      model_zoo/official/nlp/gru/README.md
  71. +1
    -1
      model_zoo/official/nlp/lstm/README.md
  72. +1
    -1
      model_zoo/official/nlp/mass/README.md
  73. +1
    -1
      model_zoo/official/nlp/mass/README_CN.md
  74. +1
    -1
      model_zoo/official/nlp/prophetnet/README.md
  75. +1
    -1
      model_zoo/official/nlp/textcnn/README.md
  76. +1
    -1
      model_zoo/official/nlp/tinybert/README.md
  77. +1
    -1
      model_zoo/official/nlp/tinybert/README_CN.md
  78. +1
    -1
      model_zoo/official/nlp/transformer/README.md
  79. +1
    -1
      model_zoo/official/nlp/transformer/README_CN.md
  80. +1
    -1
      model_zoo/official/recommend/deepfm/README.md
  81. +1
    -1
      model_zoo/official/recommend/deepfm/README_CN.md
  82. +1
    -1
      model_zoo/official/recommend/naml/README.md
  83. +1
    -1
      model_zoo/official/recommend/ncf/README.md
  84. +1
    -1
      model_zoo/official/recommend/wide_and_deep/README.md
  85. +1
    -1
      model_zoo/official/recommend/wide_and_deep/README_CN.md
  86. +1
    -1
      model_zoo/official/recommend/wide_and_deep_multitable/README.md
  87. +1
    -1
      model_zoo/official/recommend/wide_and_deep_multitable/README_CN.md
  88. +1
    -1
      model_zoo/official/rl/dqn/README.md
  89. +1
    -1
      model_zoo/research/audio/fcn-4/README.md
  90. +1
    -1
      model_zoo/research/cv/FaceAttribute/README.md
  91. +1
    -1
      model_zoo/research/cv/FaceDetection/README.md
  92. +1
    -1
      model_zoo/research/cv/FaceQualityAssessment/README.md
  93. +1
    -1
      model_zoo/research/cv/FaceRecognition/README.md
  94. +1
    -1
      model_zoo/research/cv/FaceRecognitionForTracking/README.md
  95. +1
    -1
      model_zoo/research/cv/MaskedFaceRecognition/README.md
  96. +1
    -1
      model_zoo/research/cv/centernet/README.md
  97. +1
    -1
      model_zoo/research/cv/ghostnet/Readme.md
  98. +1
    -1
      model_zoo/research/cv/ghostnet_quant/Readme.md
  99. +1
    -1
      model_zoo/research/cv/resnet50_adv_pruning/Readme.md
  100. +1
    -1
      model_zoo/research/cv/squeezenet/README.md

+ 1
- 1
model_zoo/official/cv/FCN8s/README.md View File

@@ -41,7 +41,7 @@ Dataset used:
# [环境要求](#contents)

- 硬件(Ascend/GPU)
- 需要准备具有Ascend或GPU处理能力的硬件环境. 如需使用Ascend,可以发送 [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) 到ascend@huawei.com。一旦批准,你就可以使用此资源
- 需要准备具有Ascend或GPU处理能力的硬件环境.
- 框架
- [MindSpore](https://www.mindspore.cn/install/en)
- 如需获取更多信息,请查看如下链接:


+ 65
- 65
model_zoo/official/cv/centerface/README.md View File

@@ -82,7 +82,7 @@ other datasets need to use the same format as WiderFace.
# [Environment Requirements](#contents)
- Hardware(Ascend)
- Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:
@@ -229,53 +229,53 @@ sh eval_all.sh
1. train scripts parameters
the command is: python train.py [train parameters]
Major parameters train.py as follows:
```text
--lr: learning rate
--per_batch_size: batch size on each device
--is_distributed: multi-device or not
--t_max: for cosine lr_scheduler
--max_epoch: training epochs
--warmup_epochs: warmup_epochs, not needed for adam, needed for sgd
--lr scheduler: learning rate scheduler, default is multistep
--lr_epochs: decrease lr steps
--lr_gamma: decrease lr by a factor
--weight_decay: weight decay
--loss_scale: mix precision training
--pretrained_backbone: pretrained mobilenet_v2 model path
--data_dir: data dir
--annot_path: annotations path
--img_dir: img dir in data_dir
```
the command is: python train.py [train parameters]
Major parameters train.py as follows:
```text
--lr: learning rate
--per_batch_size: batch size on each device
--is_distributed: multi-device or not
--t_max: for cosine lr_scheduler
--max_epoch: training epochs
--warmup_epochs: warmup_epochs, not needed for adam, needed for sgd
--lr scheduler: learning rate scheduler, default is multistep
--lr_epochs: decrease lr steps
--lr_gamma: decrease lr by a factor
--weight_decay: weight decay
--loss_scale: mix precision training
--pretrained_backbone: pretrained mobilenet_v2 model path
--data_dir: data dir
--annot_path: annotations path
--img_dir: img dir in data_dir
```
2. centerface unique configs: in config.py; not recommend user to change
3. test scripts parameters:
the command is: python test.py [test parameters]
Major parameters test.py as follows:
```python
test_script_path: test.py path;
--is_distributed: multi-device or not
--data_dir: img dir
--test_model: test model dir
--ground_truth_mat: ground_truth file, mat type
--save_dir: save_path for evaluate
--rank: use device id
--ckpt_name: test model name
# blow are used for calculate ckpt/model name
# model/ckpt name is "0-" + str(ckpt_num) + "_" + str(steps_per_epoch*ckpt_num) + ".ckpt";
# ckpt_num is epoch number, can be calculated by device_num
# detail can be found in "test.py"
# if ckpt is specified not need below 4 parameter
--device_num: training device number
--steps_per_epoch: steps for each epoch
--start: start loop number, used to calculate first epoch number
--end: end loop number, used to calculate last epoch number
```
the command is: python test.py [test parameters]
Major parameters test.py as follows:
```python
test_script_path: test.py path;
--is_distributed: multi-device or not
--data_dir: img dir
--test_model: test model dir
--ground_truth_mat: ground_truth file, mat type
--save_dir: save_path for evaluate
--rank: use device id
--ckpt_name: test model name
# blow are used for calculate ckpt/model name
# model/ckpt name is "0-" + str(ckpt_num) + "_" + str(steps_per_epoch*ckpt_num) + ".ckpt";
# ckpt_num is epoch number, can be calculated by device_num
# detail can be found in "test.py"
# if ckpt is specified not need below 4 parameter
--device_num: training device number
--steps_per_epoch: steps for each epoch
--start: start loop number, used to calculate first epoch number
--end: end loop number, used to calculate last epoch number
```
4. eval scripts parameters:
@@ -384,18 +384,18 @@ mkdir [SAVE_PATH]
1. test a single ckpt file
```python
# you need to change the parameter in test.sh
# or use symbolic link as quick start
# or use the command as follow:
# MODEL_PATH: ckpt path saved during training
# DATASET: img dir
# GROUND_TRUTH_MAT: ground_truth file, mat type
# SAVE_PATH: save_path for evaluate
# DEVICE_ID: use device id
# CKPT: test model name
sh test.sh [MODEL_PATH] [DATASET] [GROUND_TRUTH_MAT] [SAVE_PATH] [DEVICE_ID] [CKPT]
```
```python
# you need to change the parameter in test.sh
# or use symbolic link as quick start
# or use the command as follow:
# MODEL_PATH: ckpt path saved during training
# DATASET: img dir
# GROUND_TRUTH_MAT: ground_truth file, mat type
# SAVE_PATH: save_path for evaluate
# DEVICE_ID: use device id
# CKPT: test model name
sh test.sh [MODEL_PATH] [DATASET] [GROUND_TRUTH_MAT] [SAVE_PATH] [DEVICE_ID] [CKPT]
```
2. test many out ckpt for user to choose the best one
@@ -433,19 +433,19 @@ cd ../../../scripts;
1. eval a single testing output
```python
# you need to change the parameter in eval.sh
# default eval the ckpt saved in ./scripts/output/centerface/999
sh eval.sh
```
```python
# you need to change the parameter in eval.sh
# default eval the ckpt saved in ./scripts/output/centerface/999
sh eval.sh
```
2. eval many testing output for user to choose the best one
```python
# you need to change the parameter in eval_all.sh
# default eval the ckpt saved in ./scripts/output/centerface/[89-140]
sh eval_all.sh
```
```python
# you need to change the parameter in eval_all.sh
# default eval the ckpt saved in ./scripts/output/centerface/[89-140]
sh eval_all.sh
```
3. test+eval


+ 1
- 1
model_zoo/official/cv/cnnctc/README.md View File

@@ -96,7 +96,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
- Hardware(Ascend)
- Prepare hardware environment with Ascend processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)


+ 1
- 1
model_zoo/official/cv/crnn/README.md View File

@@ -58,7 +58,7 @@ We provide `convert_ic03.py`, `convert_iiit5k.py`, `convert_svt.py` as exmples f
## [Environment Requirements](#contents)

- Hardware(Ascend)
- Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. You will be able to have access to related resources once approved.
- Prepare hardware environment with Ascend processor.
- Framework
- [MindSpore](https://gitee.com/mindspore/mindspore)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/cv/crnn_seq2seq_ocr/README.md View File

@@ -38,7 +38,7 @@ For training and evaluation, we use the French Street Name Signs (FSNS) released
## [Environment Requirements](#contents)

- Hardware(Ascend)
- Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. You will be able to have access to related resources once approved.
- Prepare hardware environment with Ascend processor.
- Framework
- [MindSpore](https://gitee.com/mindspore/mindspore)
- For more information, please check the resources below:


+ 4
- 4
model_zoo/official/cv/ctpn/README.md View File

@@ -1,9 +1,9 @@
![](https://www.mindspore.cn/static/img/logo_black.6a5c850d.png)

<!-- TOC -->
![logo](https://www.mindspore.cn/static/img/logo_black.6a5c850d.png)

# CTPN for Ascend

<!-- TOC -->

- [CTPN Description](#CTPN-description)
- [Model Architecture](#model-architecture)
- [Dataset](#dataset)
@@ -57,7 +57,7 @@ Here we used 6 datasets for training, and 1 datasets for Evaluation.
# [Environment Requirements](#contents)

- Hardware(Ascend)
- Prepare hardware environment with Ascend processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 79
- 79
model_zoo/official/cv/deeplabv3/README.md View File

@@ -74,7 +74,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
# [Environment Requirements](#contents)
- Hardware(Ascend)
- Prepare hardware environment with Ascend. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:
@@ -83,7 +83,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
- Install python packages in requirements.txt
- Generate config json file for 8pcs training
```
```bash
# From the root of this project
cd src/tools/
python3 get_multicards_json.py 10.111.*.*
@@ -108,47 +108,47 @@ For 8 devices training, training steps are as follows:
1. Train s16 with vocaug dataset, finetuning from resnet101 pretrained model, script is:
```shell
run_distribute_train_s16_r1.sh
```
```shell
run_distribute_train_s16_r1.sh
```
2. Train s8 with vocaug dataset, finetuning from model in previous step, training script is:
```shell
run_distribute_train_s8_r1.sh
```
```shell
run_distribute_train_s8_r1.sh
```
3. Train s8 with voctrain dataset, finetuning from model in previous step, training script is:
```shell
run_distribute_train_s8_r2.sh
```
```shell
run_distribute_train_s8_r2.sh
```
For evaluation, evaluating steps are as follows:
1. Eval s16 with voc val dataset, eval script is:
```shell
run_eval_s16.sh
```
```shell
run_eval_s16.sh
```
2. Eval s8 with voc val dataset, eval script is:
```shell
run_eval_s8.sh
```
```shell
run_eval_s8.sh
```
3. Eval s8 multiscale with voc val dataset, eval script is:
```shell
run_eval_s8_multiscale.sh
```
```shell
run_eval_s8_multiscale.sh
```
4. Eval s8 multiscale and flip with voc val dataset, eval script is:
```shell
run_eval_s8_multiscale_flip.sh
```
```shell
run_eval_s8_multiscale_flip.sh
```
# [Script Description](#contents)
@@ -245,64 +245,64 @@ For 8 devices training, training steps are as follows:
1. Train s16 with vocaug dataset, finetuning from resnet101 pretrained model, script is as follows:
```shell
# run_distribute_train_s16_r1.sh
for((i=0;i<=$RANK_SIZE-1;i++));
do
export RANK_ID=${i}
export DEVICE_ID=$((i + RANK_START_ID))
echo 'start rank='${i}', device id='${DEVICE_ID}'...'
mkdir ${train_path}/device${DEVICE_ID}
cd ${train_path}/device${DEVICE_ID} || exit
python ${train_code_path}/train.py --train_dir=${train_path}/ckpt \
--data_file=/PATH/TO/MINDRECORD_NAME \
--train_epochs=300 \
--batch_size=32 \
--crop_size=513 \
--base_lr=0.08 \
--lr_type=cos \
--min_scale=0.5 \
--max_scale=2.0 \
--ignore_label=255 \
--num_classes=21 \
--model=deeplab_v3_s16 \
--ckpt_pre_trained=/PATH/TO/PRETRAIN_MODEL \
--is_distributed \
--save_steps=410 \
--keep_checkpoint_max=200 >log 2>&1 &
done
```
```shell
# run_distribute_train_s16_r1.sh
for((i=0;i<=$RANK_SIZE-1;i++));
do
export RANK_ID=${i}
export DEVICE_ID=$((i + RANK_START_ID))
echo 'start rank='${i}', device id='${DEVICE_ID}'...'
mkdir ${train_path}/device${DEVICE_ID}
cd ${train_path}/device${DEVICE_ID} || exit
python ${train_code_path}/train.py --train_dir=${train_path}/ckpt \
--data_file=/PATH/TO/MINDRECORD_NAME \
--train_epochs=300 \
--batch_size=32 \
--crop_size=513 \
--base_lr=0.08 \
--lr_type=cos \
--min_scale=0.5 \
--max_scale=2.0 \
--ignore_label=255 \
--num_classes=21 \
--model=deeplab_v3_s16 \
--ckpt_pre_trained=/PATH/TO/PRETRAIN_MODEL \
--is_distributed \
--save_steps=410 \
--keep_checkpoint_max=200 >log 2>&1 &
done
```
2. Train s8 with vocaug dataset, finetuning from model in previous step, training script is as follows:
```shell
# run_distribute_train_s8_r1.sh
for((i=0;i<=$RANK_SIZE-1;i++));
do
export RANK_ID=${i}
export DEVICE_ID=$((i + RANK_START_ID))
echo 'start rank='${i}', device id='${DEVICE_ID}'...'
mkdir ${train_path}/device${DEVICE_ID}
cd ${train_path}/device${DEVICE_ID} || exit
python ${train_code_path}/train.py --train_dir=${train_path}/ckpt \
--data_file=/PATH/TO/MINDRECORD_NAME \
--train_epochs=800 \
--batch_size=16 \
--crop_size=513 \
--base_lr=0.02 \
--lr_type=cos \
--min_scale=0.5 \
--max_scale=2.0 \
--ignore_label=255 \
--num_classes=21 \
--model=deeplab_v3_s8 \
--loss_scale=2048 \
--ckpt_pre_trained=/PATH/TO/PRETRAIN_MODEL \
--is_distributed \
--save_steps=820 \
--keep_checkpoint_max=200 >log 2>&1 &
done
```
```shell
# run_distribute_train_s8_r1.sh
for((i=0;i<=$RANK_SIZE-1;i++));
do
export RANK_ID=${i}
export DEVICE_ID=$((i + RANK_START_ID))
echo 'start rank='${i}', device id='${DEVICE_ID}'...'
mkdir ${train_path}/device${DEVICE_ID}
cd ${train_path}/device${DEVICE_ID} || exit
python ${train_code_path}/train.py --train_dir=${train_path}/ckpt \
--data_file=/PATH/TO/MINDRECORD_NAME \
--train_epochs=800 \
--batch_size=16 \
--crop_size=513 \
--base_lr=0.02 \
--lr_type=cos \
--min_scale=0.5 \
--max_scale=2.0 \
--ignore_label=255 \
--num_classes=21 \
--model=deeplab_v3_s8 \
--loss_scale=2048 \
--ckpt_pre_trained=/PATH/TO/PRETRAIN_MODEL \
--is_distributed \
--save_steps=820 \
--keep_checkpoint_max=200 >log 2>&1 &
done
```
3. Train s8 with voctrain dataset, finetuning from model in previous step, training script is as follows:
@@ -566,4 +566,4 @@ In dataset.py, we set the seed inside "create_dataset" function. We also use ran
# [ModelZoo Homepage](#contents)
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).

+ 24
- 24
model_zoo/official/cv/deeplabv3/README_CN.md View File

@@ -71,7 +71,7 @@ Pascal VOC数据集和语义边界数据集(Semantic Boundaries Dataset,SBD

- 配置并运行build_data.sh,将数据集转换为MindRecords。scripts/build_data.sh中的参数:

```
```bash
--data_root 训练数据的根路径
--data_lst 训练数据列表(如上准备)
--dst_path MindRecord所在路径
@@ -89,7 +89,7 @@ Pascal VOC数据集和语义边界数据集(Semantic Boundaries Dataset,SBD
# 环境要求

- 硬件(Ascend)
- 准备Ascend处理器搭建硬件环境。如需试用Ascend处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。
- 准备Ascend处理器搭建硬件环境。
- 框架
- [MindSpore](https://www.mindspore.cn/install)
- 如需查看详情,请参见如下资源:
@@ -98,7 +98,7 @@ Pascal VOC数据集和语义边界数据集(Semantic Boundaries Dataset,SBD
- 安装requirements.txt中的python包。
- 生成config json文件用于8卡训练。

```
```bash
# 从项目根目录进入
cd src/tools/
python3 get_multicards_json.py 10.111.*.*
@@ -123,47 +123,47 @@ run_standalone_train.sh

1. 使用VOCaug数据集训练s16,微调ResNet-101预训练模型。脚本如下:

```bash
run_distribute_train_s16_r1.sh
```
```bash
run_distribute_train_s16_r1.sh
```

2. 使用VOCaug数据集训练s8,微调上一步的模型。脚本如下:

```bash
run_distribute_train_s8_r1.sh
```
```bash
run_distribute_train_s8_r1.sh
```

3. 使用VOCtrain数据集训练s8,微调上一步的模型。脚本如下:

```bash
run_distribute_train_s8_r2.sh
```
```bash
run_distribute_train_s8_r2.sh
```

评估步骤如下:

1. 使用voc val数据集评估s16。评估脚本如下:

```bash
run_eval_s16.sh
```
```bash
run_eval_s16.sh
```

2. 使用voc val数据集评估s8。评估脚本如下:

```bash
run_eval_s8.sh
```
```bash
run_eval_s8.sh
```

3. 使用voc val数据集评估多尺度s8。评估脚本如下:

```bash
run_eval_s8_multiscale.sh
```
```bash
run_eval_s8_multiscale.sh
```

4. 使用voc val数据集评估多尺度和翻转s8。评估脚本如下:

```bash
run_eval_s8_multiscale_flip.sh
```
```bash
run_eval_s8_multiscale_flip.sh
```

# 脚本说明



+ 1
- 1
model_zoo/official/cv/deeptext/README.md View File

@@ -49,7 +49,7 @@ Here we used 4 datasets for training, and 1 datasets for Evaluation.
# [Environment Requirements](#contents)

- Hardware(Ascend)
- Prepare hardware environment with Ascend processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/cv/densenet/README.md View File

@@ -78,7 +78,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
# [Environment Requirements](#contents)

- Hardware(Ascend/GPU)
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend or GPU processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/cv/densenet/README_CN.md View File

@@ -82,7 +82,7 @@ DenseNet-100使用的数据集: Cifar-10
# 环境要求

- 硬件(Ascend/GPU)
- 准备Ascend或GPU处理器搭建硬件环境。如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。
- 准备Ascend或GPU处理器搭建硬件环境。
- 框架
- [MindSpore](https://www.mindspore.cn/install)
- 如需查看详情,请参见如下资源:


+ 1
- 1
model_zoo/official/cv/dpn/README.md View File

@@ -70,7 +70,7 @@ The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advan
To run the python scripts in the repository, you need to prepare the environment as follow:

- Hardware
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to [ascend@huawei.com](mailto:ascend@huawei.com). Once approved, you can get the resources.
- Prepare hardware environment with Ascend or GPU processor.
- Python and dependencies
- Python3.7
- Mindspore 1.1.0


+ 1
- 1
model_zoo/official/cv/faster_rcnn/README.md View File

@@ -48,7 +48,7 @@ Dataset used: [COCO2017](<https://cocodataset.org/>)
# Environment Requirements

- Hardware(Ascend/GPU)
- Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend processor.

- Docker base image
- [Ascend Hub](ascend.huawei.com/ascendhub/#/home)


+ 1
- 1
model_zoo/official/cv/faster_rcnn/README_CN.md View File

@@ -49,7 +49,7 @@ Faster R-CNN是一个两阶段目标检测网络,该网络采用RPN,可以
# 环境要求

- 硬件(Ascend/GPU)
- 使用Ascend处理器来搭建硬件环境。如需试用Ascend处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。
- 使用Ascend处理器来搭建硬件环境。

- 获取基础镜像
- [Ascend Hub](https://ascend.huawei.com/ascendhub/#/home)


+ 1
- 1
model_zoo/official/cv/googlenet/README.md View File

@@ -68,7 +68,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
# [Environment Requirements](#contents)
- Hardware(Ascend/GPU)
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend or GPU processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/cv/googlenet/README_CN.md View File

@@ -75,7 +75,7 @@ GoogleNet由多个inception模块串联起来,可以更加深入。 降维的
# 环境要求

- 硬件(Ascend/GPU)
- 使用Ascend或GPU处理器来搭建硬件环境。如需试用Ascend处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。
- 使用Ascend或GPU处理器来搭建硬件环境。
- 框架
- [MindSpore](https://www.mindspore.cn/install/en)
- 如需查看详情,请参见如下资源:


+ 1
- 1
model_zoo/official/cv/inceptionv3/README.md View File

@@ -59,7 +59,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
# [Environment Requirements](#contents)

- Hardware(Ascend)
- Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/cv/inceptionv3/README_CN.md View File

@@ -70,7 +70,7 @@ InceptionV3的总体网络架构如下:
# 环境要求

- 硬件(Ascend)
- 使用Ascend来搭建硬件环境。如需试用Ascend处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。
- 使用Ascend来搭建硬件环境。
- 框架
- [MindSpore](https://www.mindspore.cn/install/en)
- 如需查看详情,请参见如下资源:


+ 1
- 1
model_zoo/official/cv/inceptionv4/README.md View File

@@ -51,7 +51,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
# [Environment Requirements](#contents)

- Hardware(Ascend/GPU)
- Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend processor.
- or prepare GPU processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)


+ 1
- 1
model_zoo/official/cv/maskrcnn/README.md View File

@@ -53,7 +53,7 @@ Note that you can run the scripts based on the dataset mentioned in original pap
# [Environment Requirements](#contents)

- Hardware(Ascend)
- Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend processor.
- Framework
- [MindSpore](https://gitee.com/mindspore/mindspore)
- Docker base image


+ 1
- 1
model_zoo/official/cv/maskrcnn/README_CN.md View File

@@ -55,7 +55,7 @@ MaskRCNN是一个两级目标检测网络,作为FasterRCNN的扩展模型,
# 环境要求

- 硬件(昇腾处理器)
- 采用昇腾处理器搭建硬件环境。如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。
- 采用昇腾处理器搭建硬件环境。
- 框架
- [MindSpore](https://gitee.com/mindspore/mindspore)
- 获取基础镜像


+ 1
- 1
model_zoo/official/cv/maskrcnn_mobilenetv1/README.md View File

@@ -54,7 +54,7 @@ Note that you can run the scripts based on the dataset mentioned in original pap
# [Environment Requirements](#contents)

- Hardware(Ascend)
- Prepare hardware environment with Ascend processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend processor.
- Framework
- [MindSpore](https://gitee.com/mindspore/mindspore)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/cv/mobilenetv1/README.md View File

@@ -64,7 +64,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
## Environment Requirements

- Hardware(Ascend)
- Prepare hardware environment with Ascend. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/cv/mobilenetv2/README.md View File

@@ -50,7 +50,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
# [Environment Requirements](#contents)

- Hardware(Ascend/GPU/CPU)
- Prepare hardware environment with Ascend, GPU or CPU processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend, GPU or CPU processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/cv/mobilenetv2/README_CN.md View File

@@ -56,7 +56,7 @@ MobileNetV2总体网络架构如下:
# 环境要求

- 硬件(Ascend/GPU/CPU)
- 使用Ascend、GPU或CPU处理器来搭建硬件环境。如需试用Ascend处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。
- 使用Ascend、GPU或CPU处理器来搭建硬件环境。
- 框架
- [MindSpore](https://www.mindspore.cn/install)
- 如需查看详情,请参见如下资源:


+ 1
- 1
model_zoo/official/cv/mobilenetv2_quant/README_CN.md View File

@@ -65,7 +65,7 @@ MobileNetV2总体网络架构如下:
# 环境要求

- 硬件:昇腾处理器(Ascend)
- 使用昇腾处理器来搭建硬件环境。如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。
- 使用昇腾处理器来搭建硬件环境。
- 框架
- [MindSpore](https://www.mindspore.cn/install)
- 如需查看详情,请参见如下资源


+ 1
- 1
model_zoo/official/cv/mobilenetv2_quant/Readme.md View File

@@ -52,7 +52,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
# [Environment Requirements](#contents)

- Hardware:Ascend
- Prepare hardware environment with Ascend. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below


+ 1
- 1
model_zoo/official/cv/openpose/README.md View File

@@ -75,7 +75,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
# [Environment Requirements](#contents)

- Hardware (Ascend)
- Prepare hardware environment with Ascend. If you want to try, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- Download the VGG19 model of the MindSpore version:


+ 1
- 1
model_zoo/official/cv/psenet/README.md View File

@@ -46,7 +46,7 @@ A testing set containing about 2000 readable words
# [Environment Requirements](#contents)
- Hardware(Ascend)
- Prepare hardware environment with Ascend processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend processor.
- Framework
- [MindSpore](http://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/cv/psenet/README_CN.md View File

@@ -47,7 +47,7 @@
# 环境要求

- 硬件:昇腾处理器(Ascend)
- 使用Ascend处理器来搭建硬件环境。如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。
- 使用Ascend处理器来搭建硬件环境。

- 框架
- [MindSpore](https://www.mindspore.cn/install)


+ 1
- 1
model_zoo/official/cv/resnet/README.md View File

@@ -82,7 +82,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
# [Environment Requirements](#contents)

- Hardware(Ascend/GPU/CPU)
- Prepare hardware environment with Ascend, GPU or CPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend, GPU or CPU processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/cv/resnet/README_CN.md View File

@@ -85,7 +85,7 @@ ResNet的总体网络架构如下:
# 环境要求

- 硬件(Ascend/GPU)
- 准备Ascend或GPU处理器搭建硬件环境。如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。
- 准备Ascend或GPU处理器搭建硬件环境。
- 框架
- [MindSpore](https://www.mindspore.cn/install/en)
- 如需查看详情,请参见如下资源:


+ 1
- 1
model_zoo/official/cv/resnet152/README-CN.md View File

@@ -35,7 +35,7 @@ ResNet152的总体网络架构如下:[链接](https://arxiv.org/pdf/1512.03385
# 环境要求

- 硬件
- 准备Ascend处理器搭建硬件环境。如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。
- 准备Ascend处理器搭建硬件环境。
- 框架
- [MindSpore](https://www.mindspore.cn/install/en)
- 如需查看详情,请参见如下资源:


+ 1
- 1
model_zoo/official/cv/resnet50_quant/README.md View File

@@ -59,7 +59,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
# [Environment Requirements](#contents)

- Hardware:Ascend
- Prepare hardware environment with Ascend. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/cv/resnet50_quant/README_CN.md View File

@@ -64,7 +64,7 @@ ResNet-50总体网络架构如下:
# 环境要求

- 硬件:昇腾处理器(Ascend)
- 使用昇腾处理器来搭建硬件环境。如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。
- 使用昇腾处理器来搭建硬件环境。

- 框架
- [MindSpore](https://www.mindspore.cn/install)


+ 1
- 1
model_zoo/official/cv/resnet_thor/README.md View File

@@ -52,7 +52,7 @@ The classical first-order optimization algorithm, such as SGD, has a small amoun
## Environment Requirements

- Hardware(Ascend/GPU)
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend or GPU processor.

- Framework
- [MindSpore](https://www.mindspore.cn/install/en)


+ 1
- 1
model_zoo/official/cv/resnet_thor/README_CN.md View File

@@ -57,7 +57,7 @@ ResNet-50的总体网络架构如下:[链接](https://arxiv.org/pdf/1512.03385
## 环境要求

- 硬件:昇腾处理器(Ascend或GPU)
- 使用Ascend或GPU处理器搭建硬件环境。如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) 至ascend@huawei.com,审核通过即可获得资源。
- 使用Ascend或GPU处理器搭建硬件环境。

- 框架
- [MindSpore](https://www.mindspore.cn/install)


+ 2
- 3
model_zoo/official/cv/resnext101/README_CN.md View File

@@ -1,4 +1,4 @@
# ResNext101-64x4d for MindSpore
# ResNext101-64x4d

本仓库提供了ResNeXt101-64x4d模型的训练脚本和超参配置,以达到论文中的准确性。

@@ -65,7 +65,7 @@ ResNeXt是ResNet网络的改进版本,比ResNet的网络多了块多了cardina

## 快速入门指南

目录说明,代码参考了Modelzoo上的[ResNext50_for_MindSpore](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/resnext50)
目录说明,代码参考了Modelzoo上的[ResNext50](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/resnext50)

```path
.
@@ -221,4 +221,3 @@ python export.py --device_target [PLATFORM] --ckpt_file [CKPT_PATH] --file_forma
| **NPUs** | train performance |
| :------: | :---------------: |
| 1 | 196.33image/sec |


+ 1
- 1
model_zoo/official/cv/resnext50/README.md View File

@@ -53,7 +53,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
# [Environment Requirements](#contents)

- Hardware(Ascend/GPU)
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend or GPU processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/cv/resnext50/README_CN.md View File

@@ -58,7 +58,7 @@ ResNeXt整体网络架构如下:
# 环境要求

- 硬件(Ascend或GPU)
- 准备Ascend或GPU处理器搭建硬件环境。如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。
- 准备Ascend或GPU处理器搭建硬件环境。
- 框架
- [MindSpore](https://www.mindspore.cn/install)
- 如需查看详情,请参见如下资源:


+ 1
- 1
model_zoo/official/cv/retinanet/README_CN.md View File

@@ -58,7 +58,7 @@ MSCOCO2017
## [环境要求](#content)

- 硬件(Ascend)
- 使用Ascend处理器准备硬件环境。如果您想使用Ascend,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com。一旦获得批准,您就可以获取资源。
- 使用Ascend处理器准备硬件环境。
- 架构
- [MindSpore](https://www.mindspore.cn/install/en)
- 想要获取更多信息,请检查以下资源:


+ 1
- 1
model_zoo/official/cv/shufflenetv1/README_CN.md View File

@@ -42,7 +42,7 @@ ShuffleNetV1的核心部分被分成三个阶段,每个阶段重复堆积了
# 环境要求

- 硬件(Ascend)
- 使用Ascend来搭建硬件环境。如需试用Ascend处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。
- 使用Ascend来搭建硬件环境。
- 框架
- [MindSpore](https://www.mindspore.cn/install)
- 如需查看详情,请参见如下资源:


+ 1
- 1
model_zoo/official/cv/simple_pose/README.md View File

@@ -60,7 +60,7 @@ The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advan
To run the python scripts in the repository, you need to prepare the environment as follow:

- Hardware
- Prepare hardware environment with Ascend. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to [ascend@huawei.com](mailto:ascend@huawei.com). Once approved, you can get the resources.
- Prepare hardware environment with Ascend.
- Python and dependencies
- python 3.7
- mindspore 1.0.1


+ 1
- 1
model_zoo/official/cv/squeezenet/README.md View File

@@ -63,7 +63,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
# [Environment Requirements](#contents)
- Hardware(Ascend/CPU)
- Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. Squeezenet training on GPU performs badly now, and it is still in research. See [squeezenet in research](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/cv/squeezenet) to get up-to-date details.
- Prepare hardware environment with Ascend processor. Squeezenet training on GPU performs is not good now, and it is still in research. See [squeezenet in research](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/cv/squeezenet) to get up-to-date details.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/cv/tinydarknet/README.md View File

@@ -56,7 +56,7 @@ Dataset used can refer to [paper](<https://ieeexplore.ieee.org/abstract/document
# [Environment Requirements](#contents)

- Hardware(Ascend)
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) form to ascend@huawei.com.
- Prepare hardware environment with Ascend or GPU processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information,please check the resources below:


+ 1
- 1
model_zoo/official/cv/tinydarknet/README_CN.md View File

@@ -64,7 +64,7 @@ Tiny-DarkNet是Joseph Chet Redmon等人提出的一个16层的针对于经典的
# [环境要求](#目录)

- 硬件(Ascend)
- 请准备具有Ascend处理器的硬件环境.如果想使用Ascend资源,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) 至ascend@huawei.com. 当收到许可即可使用Ascend资源.
- 请准备具有Ascend处理器的硬件环境.
- 框架
- [MindSpore](https://www.mindspore.cn/install/en)
- 更多的信息请访问以下链接:


+ 1
- 1
model_zoo/official/cv/unet/README.md View File

@@ -58,7 +58,7 @@ We also support cell nuclei dataset which is used in [Unet++ original paper](htt
## [Environment Requirements](#contents)
- Hardware(Ascend)
- Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/cv/unet/README_CN.md View File

@@ -62,7 +62,7 @@ UNet++是U-Net的增强版本,使用了新的跨层链接方式和深层监督
## 环境要求
- 硬件(Ascend)
- 准备Ascend处理器搭建硬件环境。如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。
- 准备Ascend处理器搭建硬件环境。
- 框架
- [MindSpore](https://www.mindspore.cn/install)
- 如需查看详情,请参见如下资源:


+ 1
- 1
model_zoo/official/cv/vgg16/README.md View File

@@ -87,7 +87,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
## [Environment Requirements](#contents)

- Hardware(Ascend/GPU)
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend or GPU processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/cv/vgg16/README_CN.md View File

@@ -94,7 +94,7 @@ VGG 16网络主要由几个基本模块(包括卷积层和池化层)和三
## 环境要求

- 硬件(Ascend或GPU)
- 准备Ascend或GPU处理器搭建硬件环境。如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。
- 准备Ascend或GPU处理器搭建硬件环境。
- 框架
- [MindSpore](https://www.mindspore.cn/install)
- 如需查看详情,请参见如下资源:


+ 1
- 1
model_zoo/official/cv/warpctc/README.md View File

@@ -38,7 +38,7 @@ The dataset is self-generated using a third-party library called [captcha](https
## [Environment Requirements](#contents)

- Hardware(Ascend/GPU)
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. You will be able to have access to related resources once approved.
- Prepare hardware environment with Ascend or GPU processor.
- Framework
- [MindSpore](https://gitee.com/mindspore/mindspore)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/cv/warpctc/README_CN.md View File

@@ -43,7 +43,7 @@ WarpCTC是带有一层FC神经网络的二层堆叠LSTM模型。详细信息请
## 环境要求
- 硬件(Ascend/GPU)
- 使用Ascend或GPU处理器来搭建硬件环境。如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawie,审核通过即可获得资源。
- 使用Ascend或GPU处理器来搭建硬件环境。
- 框架
- [MindSpore](https://gitee.com/mindspore/mindspore)
- 如需查看详情,请参见如下资源:


+ 1
- 1
model_zoo/official/cv/xception/README.md View File

@@ -58,7 +58,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
# [Environment Requirements](#contents)

- Hardware(Ascend)
- Prepare hardware environment with Ascend. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/cv/yolov3_darknet53/README.md View File

@@ -68,7 +68,7 @@ Dataset used: [COCO2014](https://cocodataset.org/#download)
## [Environment Requirements](#contents)

- Hardware(Ascend/GPU)
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend or GPU processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/cv/yolov3_darknet53/README_CN.md View File

@@ -70,7 +70,7 @@ YOLOv3使用DarkNet53执行特征提取,这是YOLOv2中的Darknet-19和残差
# 环境要求
- 硬件(Ascend/GPU)
- 使用Ascend或GPU处理器来搭建硬件环境。如需试用Ascend处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) 至ascend@huawei.com,审核通过即可获得资源。
- 使用Ascend或GPU处理器来搭建硬件环境。
- 框架
- [MindSpore](https://www.mindspore.cn/install)
- 如需查看详情,请参见如下资源:


+ 1
- 1
model_zoo/official/cv/yolov3_darknet53_quant/README.md View File

@@ -54,7 +54,7 @@ Dataset used: [COCO2014](https://cocodataset.org/#download)
## [Environment Requirements](#contents)

- Hardware(Ascend)
- Prepare hardware environment with Ascend processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/cv/yolov3_darknet53_quant/README_CN.md View File

@@ -56,7 +56,7 @@ YOLOv3使用DarkNet53执行特征提取,这是YOLOv2中的Darknet-19和残差
## 环境要求
- 硬件(Ascend处理器)
- 准备Ascend或GPU处理器搭建硬件环境。如需试用Ascend处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。
- 准备Ascend或GPU处理器搭建硬件环境。
- 框架
- [MindSpore](https://www.mindspore.cn/install/)
- 如需查看详情,请参见如下资源:


+ 1
- 1
model_zoo/official/cv/yolov3_resnet18/README.md View File

@@ -66,7 +66,7 @@ Dataset used: [COCO2017](<http://images.cocodataset.org/>)
# [Environment Requirements](#contents)

- Hardware(Ascend)
- Prepare hardware environment with Ascend processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/cv/yolov3_resnet18/README_CN.md View File

@@ -69,7 +69,7 @@ YOLOv3整体网络架构如下:
# 环境要求
- 硬件(Ascend处理器)
- 准备Ascend处理器搭建硬件环境。如需试用Ascend处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,审核通过即可获得资源。
- 准备Ascend处理器搭建硬件环境。
- 框架
- [MindSpore](https://www.mindspore.cn/install)
- 如需查看详情,请参见如下资源:


+ 1
- 1
model_zoo/official/cv/yolov4/README.md View File

@@ -62,7 +62,7 @@ other datasets need to use the same format as MS COCO.
# [Environment Requirements](#contents)

- Hardware(Ascend)
- Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/gnn/gcn/README.md View File

@@ -36,7 +36,7 @@ Note that you can run the scripts based on the dataset mentioned in original pap
## [Environment Requirements](#contents)

- Hardware(Ascend)
- Prepare hardware environment with Ascend processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend processor.
- Framework
- [MindSpore](https://gitee.com/mindspore/mindspore)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/gnn/gcn/README_CN.md View File

@@ -44,7 +44,7 @@ GCN包含两个图卷积层。每一层以节点特征和邻接矩阵为输入
## 环境要求
- 硬件(Ascend处理器)
- 准备Ascend或GPU处理器搭建硬件环境。如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei,审核通过即可获得资源。
- 准备Ascend或GPU处理器搭建硬件环境。
- 框架
- [MindSpore](https://gitee.com/mindspore/mindspore)
- 如需查看详情,请参见如下资源:


+ 1
- 1
model_zoo/official/nlp/bert/README.md View File

@@ -56,7 +56,7 @@ The backbone structure of BERT is transformer. For BERT_base, the transformer co
# [Environment Requirements](#contents)

- Hardware(Ascend/GPU)
- Prepare hardware environment with Ascend/GPU processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get access to the resources.
- Prepare hardware environment with Ascend/GPU processor.
- Framework
- [MindSpore](https://gitee.com/mindspore/mindspore)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/nlp/bert/README_CN.md View File

@@ -59,7 +59,7 @@ BERT的主干结构为Transformer。对于BERT_base,Transformer包含12个编
# 环境要求

- 硬件(Ascend处理器)
- 准备Ascend或GPU处理器搭建硬件环境。如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,申请通过后,即可获得资源。
- 准备Ascend或GPU处理器搭建硬件环境。
- 框架
- [MindSpore](https://gitee.com/mindspore/mindspore)
- 更多关于Mindspore的信息,请查看以下资源:


+ 1
- 1
model_zoo/official/nlp/bert_thor/README.md View File

@@ -50,7 +50,7 @@ The classical first-order optimization algorithm, such as SGD, has a small amoun
## Environment Requirements
- Hardware(Ascend)
- Prepare hardware environment with Ascend. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/nlp/bert_thor/README_CN.md View File

@@ -56,7 +56,7 @@ BERT的总体架构包含3个嵌入层,用于查找令牌嵌入、位置嵌入
环境要求
- 硬件(Ascend)
- 使用Ascend处理器准备硬件环境。- 如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,申请通过即可获得资源。
- 使用Ascend处理器准备硬件环境。
- 框架
- [MindSpore](https://www.mindspore.cn/install)
- 更多关于Mindspore的信息,请查看以下资源:


+ 1
- 1
model_zoo/official/nlp/fasttext/README.md View File

@@ -50,7 +50,7 @@ architecture. In the following sections, we will introduce how to run the script
# [Environment Requirements](#content)

- Hardware(Ascend)
- Prepare hardware environment with Ascend processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend processor.
- Framework
- [MindSpore](https://gitee.com/mindspore/mindspore)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/nlp/gnmt_v2/README.md View File

@@ -47,7 +47,7 @@ Note that you can run the scripts based on the dataset mentioned in original pap
## Platform

- Hardware (Ascend)
- Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you could get the resources for trial.
- Prepare hardware environment with Ascend processor.
- Framework
- Install [MindSpore](https://www.mindspore.cn/install/en).
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/nlp/gpt/README.md View File

@@ -30,7 +30,7 @@ GPT3 stacks many layers of decoder of transformer. According to the layer number
# [Environment Requirements](#contents)

- Hardware(Ascend)
- Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get access to the resources.
- Prepare hardware environment with Ascend processor.
- Framework
- [MindSpore](https://gitee.com/mindspore/mindspore)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/nlp/gru/README.md View File

@@ -45,7 +45,7 @@ In this model, we use the Multi30K dataset as our train and test dataset.As trai
# [Environment Requirements](#content)

- Hardware(Ascend)
- Prepare hardware environment with Ascend processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend processor.
- Framework
- [MindSpore](https://gitee.com/mindspore/mindspore)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/nlp/lstm/README.md View File

@@ -39,7 +39,7 @@ Note that you can run the scripts based on the dataset mentioned in original pap
# [Environment Requirements](#contents)

- Hardware(GPU/CPU/Ascend)
- If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you could get the resources for trial.
- Prepare hardware environment with Ascend, GPU or CPU processor.
- Framework
- [MindSpore](https://gitee.com/mindspore/mindspore)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/nlp/mass/README.md View File

@@ -488,7 +488,7 @@ More detail about LR scheduler could be found in `src/utils/lr_scheduler.py`.
## Platform

- Hardware(Ascend/GPU)
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend or GPU processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/nlp/mass/README_CN.md View File

@@ -487,7 +487,7 @@ python weights_average.py --input_files your_checkpoint_list --output_file model
## 平台

- 硬件(Ascend或GPU)
- 使用Ascend或GPU处理器准备硬件环境。- 如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,申请通过即可获得资源。
- 使用Ascend或GPU处理器准备硬件环境。
- 框架
- [MindSpore](https://www.mindspore.cn/install)
- 更多关于Mindspore的信息,请查看以下资源:


+ 1
- 1
model_zoo/official/nlp/prophetnet/README.md View File

@@ -546,7 +546,7 @@ The comparisons between MASS and other baseline methods in terms of PPL on Corne
## Platform

- Hardware(Ascend)
- Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you could get the resources for trial.
- Prepare hardware environment with Ascend processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/nlp/textcnn/README.md View File

@@ -40,7 +40,7 @@ Dataset used: [Movie Review Data](<http://www.cs.cornell.edu/people/pabo/movie-r
# [Environment Requirements](#contents)

- Hardware(Ascend)
- Prepare hardware environment with Ascend processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/nlp/tinybert/README.md View File

@@ -51,7 +51,7 @@ The backbone structure of TinyBERT is transformer, the transformer contains four
# [Environment Requirements](#contents)

- Hardware(Ascend/GPU)
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend or GPU processor.
- Framework
- [MindSpore](https://gitee.com/mindspore/mindspore)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/nlp/tinybert/README_CN.md View File

@@ -56,7 +56,7 @@ TinyBERT模型的主干结构是转换器,转换器包含四个编码器模块
# 环境要求
- 硬件(Ascend或GPU)
- 使用Ascend或GPU处理器准备硬件环境。如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)到ascend@huawei.com。申请通过后,即可获得资源。
- 使用Ascend或GPU处理器准备硬件环境。
- 框架
- [MindSpore](https://gitee.com/mindspore/mindspore)
- 更多关于Mindspore的信息,请查看以下资源:


+ 1
- 1
model_zoo/official/nlp/transformer/README.md View File

@@ -40,7 +40,7 @@ Note that you can run the scripts based on the dataset mentioned in original pap
## [Environment Requirements](#contents)

- Hardware(Ascend/GPU)
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend or GPU processor.
- Framework
- [MindSpore](https://gitee.com/mindspore/mindspore)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/nlp/transformer/README_CN.md View File

@@ -46,7 +46,7 @@ Transformer具体包括六个编码模块和六个解码模块。每个编码模
## 环境要求
- 硬件(Ascend处理器)
- 使用Ascend处理器准备硬件环境。- 如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei,申请通过后,即可获得资源。
- 使用Ascend处理器准备硬件环境。
- 框架
- [MindSpore](https://gitee.com/mindspore/mindspore)
- 如需查看详情,请参见如下资源:


+ 1
- 1
model_zoo/official/recommend/deepfm/README.md View File

@@ -38,7 +38,7 @@ The FM and deep component share the same input raw feature vector, which enables
# [Environment Requirements](#contents)

- Hardware(Ascend/GPU/CPU)
- Prepare hardware environment with Ascend, GPU, or CPU processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend, GPU, or CPU processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/recommend/deepfm/README_CN.md View File

@@ -43,7 +43,7 @@ FM和深度学习部分拥有相同的输入原样特征向量,让DeepFM能从
## 环境要求
- 硬件(Ascend或GPU)
- 使用Ascend或GPU处理器准备硬件环境。如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,申请通过后,即可获得资源。
- 使用Ascend或GPU处理器准备硬件环境。
- 框架
- [MindSpore](https://www.mindspore.cn/install)
- 如需查看详情,请参见如下资源:


+ 1
- 1
model_zoo/official/recommend/naml/README.md View File

@@ -38,7 +38,7 @@ You can download the dataset and put the directory in structure as follows:
# [Environment Requirements](#contents)

- Hardware(Ascend/GPU)
- Prepare hardware environment with Ascend, GPU processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend, GPU processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/recommend/ncf/README.md View File

@@ -75,7 +75,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
# [Environment Requirements](#contents)

- Hardware(Ascend/GPU)
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend or GPU processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/recommend/wide_and_deep/README.md View File

@@ -43,7 +43,7 @@ Currently we support host-device mode with column partition and parameter serve
# [Environment Requirements](#contents)

- Hardware(Ascend or GPU)
- Prepare hardware environment with Ascend processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend processor.
- Framework
- [MindSpore](https://gitee.com/mindspore/mindspore)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/recommend/wide_and_deep/README_CN.md View File

@@ -45,7 +45,7 @@ Wide&Deep模型训练了宽线性模型和深度学习神经网络,结合了
# 环境要求
- 硬件(Ascend或GPU)
- 准备Ascend或GPU处理器搭建硬件环境。- 如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com, 申请通过即可获得资源。
- 准备Ascend或GPU处理器搭建硬件环境。
- 框架
- [MindSpore](https://gitee.com/mindspore/mindspore)
- 如需查看详情,请参见如下资源:


+ 1
- 1
model_zoo/official/recommend/wide_and_deep_multitable/README.md View File

@@ -35,7 +35,7 @@ Wide&Deep model jointly trained wide linear models and deep neural network, whic
## [Environment Requirements](#contents)

- Hardware(Ascend or GPU)
- Prepare hardware environment with Ascend processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend processor.
- Framework
- [MindSpore](https://gitee.com/mindspore/mindspore)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/official/recommend/wide_and_deep_multitable/README_CN.md View File

@@ -38,7 +38,7 @@ Wide&Deep模型训练了宽线性模型和深度学习神经网络,结合了
## 环境要求
- 硬件(Ascend或GPU)
- 准备Ascend或GPU处理器搭建硬件环境。如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,申请通过即可获得资源。
- 准备Ascend或GPU处理器搭建硬件环境。
- 框架
- [MindSpore](https://gitee.com/mindspore/mindspore)
- 更多关于Mindspore的信息,请查看以下资源:


+ 1
- 1
model_zoo/official/rl/dqn/README.md View File

@@ -30,7 +30,7 @@ The overall network architecture of DQN is show below:
## [Requirements](#content)

- Hardware(Ascend/GPU/CPU)
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend or GPU processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/research/audio/fcn-4/README.md View File

@@ -38,7 +38,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
## [Environment Requirements](#contents)
- Hardware(Ascend
- If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/research/cv/FaceAttribute/README.md View File

@@ -86,7 +86,7 @@ We use about 91K face images as training dataset and 11K as evaluating dataset i
# [Environment Requirements](#contents)

- Hardware(Ascend)
- Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/research/cv/FaceDetection/README.md View File

@@ -70,7 +70,7 @@ We use about 13K images as training dataset and 3K as evaluating dataset in this
# [Environment Requirements](#contents)

- Hardware(Ascend)
- Prepare hardware environment with Ascend processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/research/cv/FaceQualityAssessment/README.md View File

@@ -68,7 +68,7 @@ We use about 122K face images as training dataset and 2K as evaluating dataset i
# [Environment Requirements](#contents)

- Hardware(Ascend)
- Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/research/cv/FaceRecognition/README.md View File

@@ -56,7 +56,7 @@ The directory structure is as follows:
# [Environment Requirements](#contents)
- Hardware(Ascend)
- Prepare hardware environment with Ascend processor. If you want to get Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/research/cv/FaceRecognitionForTracking/README.md View File

@@ -56,7 +56,7 @@ The directory structure is as follows:
# [Environment Requirements](#contents)
- Hardware(Ascend)
- Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/research/cv/MaskedFaceRecognition/README.md View File

@@ -66,7 +66,7 @@ The directory structure is as follows:
## [Environment Requirements](#contents)

- Hardware(Ascend)
- Prepare hardware environment with Ascend processor. If you want to get Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/research/cv/centernet/README.md View File

@@ -77,7 +77,7 @@ Dataset used: [COCO2017](https://cocodataset.org/)
# [Environment Requirements](#contents)

- Hardware(Ascend)
- Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/research/cv/ghostnet/Readme.md View File

@@ -41,7 +41,7 @@ Dataset used: [Oxford-IIIT Pet](https://www.robots.ox.ac.uk/~vgg/data/pets/)
## [Environment Requirements](#contents)

- Hardware(Ascend/GPU)
- Prepare hardware environment with Ascend or GPU. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend or GPU.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/research/cv/ghostnet_quant/Readme.md View File

@@ -46,7 +46,7 @@ Dataset used: [Oxford-IIIT Pet](https://www.robots.ox.ac.uk/~vgg/data/pets/)
## [Environment Requirements](#contents)

- Hardware(Ascend/GPU)
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend or GPU processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/research/cv/resnet50_adv_pruning/Readme.md View File

@@ -43,7 +43,7 @@ Dataset used: [Oxford-IIIT Pet](https://www.robots.ox.ac.uk/~vgg/data/pets/)
# [Environment Requirements](#contents)

- Hardware(Ascend/GPU)
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend or GPU processor.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


+ 1
- 1
model_zoo/research/cv/squeezenet/README.md View File

@@ -63,7 +63,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
# [Environment Requirements](#contents)
- Hardware(Ascend/GPU)
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. Squeezenet training on GPU performs badly now, and it is still in research.
- Prepare hardware environment with Ascend or GPU processor. Squeezenet training on GPU performs not well now, and it is still in research.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:


Some files were not shown because too many files changed in this diff

Loading…
Cancel
Save