You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

basic_arith.cpp 66 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847
  1. #include "megbrain/opr/basic_arith.h"
  2. #include "megbrain/gopt/basic_arith.h"
  3. #include "megbrain/gopt/gtrans.h"
  4. #include "megbrain/graph/grad_impl.h"
  5. #include "megbrain/opr/basic_arith_wrapper.h"
  6. #include "megbrain/opr/cond.h"
  7. #include "megbrain/opr/io.h"
  8. #include "megbrain/opr/tensor_manip.h"
  9. #include "megbrain/opr/utility.h"
  10. #include "megbrain/utils/arith_helper.h"
  11. #include "./internal/megdnn_opr_wrapper.inl"
  12. #include <cmath>
  13. using namespace mgb;
  14. using namespace opr;
  15. /* ========================= BatchedDTypePromotion ========================= */
  16. intl::BatchedDTypePromotion::BatchedDTypePromotion(const VarNodeArrayView& vars)
  17. : m_orig_vars{vars} {
  18. mgb_assert(!vars.empty());
  19. DType final_dtype;
  20. bool changed = false;
  21. for (size_t i = 0; i < vars.size(); ++i) {
  22. auto cur = vars[i]->dtype();
  23. if (!i) {
  24. final_dtype = cur;
  25. } else {
  26. auto promoted = dtype_promotion(final_dtype, cur);
  27. changed |= promoted != final_dtype || promoted != cur;
  28. final_dtype = promoted;
  29. }
  30. }
  31. m_changed = changed;
  32. m_final_dtype = final_dtype;
  33. }
  34. void intl::BatchedDTypePromotion::set_dtype(DType dtype) {
  35. mgb_assert(!m_finalized);
  36. if (m_final_dtype != dtype) {
  37. m_final_dtype = dtype;
  38. m_changed = true;
  39. }
  40. }
  41. const VarNodeArrayView& intl::BatchedDTypePromotion::get_vars() {
  42. m_finalized = true;
  43. if (!m_changed) {
  44. return m_orig_vars;
  45. }
  46. if (!m_cvt_vars_view.valid()) {
  47. m_cvt_vars.resize(m_orig_vars.size());
  48. auto dtype = m_final_dtype;
  49. for (size_t i = 0; i < m_cvt_vars.size(); ++i) {
  50. m_cvt_vars[i] = TypeCvt::make(m_orig_vars[i], dtype).node();
  51. }
  52. m_cvt_vars_view.emplace(m_cvt_vars);
  53. }
  54. return m_cvt_vars_view.val();
  55. }
  56. /* =========================== Elemwise =========================== */
  57. MGB_DYN_TYPE_OBJ_FINAL_IMPL(Elemwise);
  58. Elemwise::Elemwise(
  59. const ModeTrait& mode_trait, const VarNodeArrayView& inputs, Param param,
  60. const OperatorNodeConfig& config)
  61. : Super{inputs.at(0)->owner_graph(), config, mode_trait.name, inputs} {
  62. init_megdnn_opr(*this, param);
  63. output(0)->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
  64. if (mode_trait.commutable) {
  65. mgb_assert(inputs.size() == 2);
  66. add_input({inputs[0], inputs[1]}, AddInputSortType::CUR_ADDED);
  67. } else {
  68. if (param.mode == Mode::FUSE_MUL_ADD3) {
  69. add_input({inputs[0], inputs[1]}, AddInputSortType::CUR_ADDED);
  70. add_input({inputs[2]});
  71. } else if (param.mode == Mode::FUSE_MUL_ADD4) {
  72. auto i0 = inputs[0], i1 = inputs[1], i2 = inputs[2], i3 = inputs[3];
  73. if (i0->id() > i1->id())
  74. std::swap(i0, i1);
  75. if (i2->id() > i3->id())
  76. std::swap(i2, i3);
  77. if (i0->id() > i2->id()) {
  78. std::swap(i0, i2);
  79. std::swap(i1, i3);
  80. }
  81. add_input({i0, i1, i2, i3});
  82. } else {
  83. for (auto i : inputs)
  84. add_input({i});
  85. }
  86. }
  87. mgb_assert(m_input_broadcastable.size() >= inputs.size());
  88. for (size_t i = 0; i < inputs.size(); ++i) {
  89. if (input()[i]->owner_opr()->same_type<opr::MarkNoBroadcastElemwise>()) {
  90. m_input_broadcastable[i] = false;
  91. } else {
  92. m_input_broadcastable[i] = true;
  93. }
  94. }
  95. if (inputs.size() == 1) {
  96. m_input_broadcastable[0] = false;
  97. } else {
  98. Maybe<size_t> non_scalar;
  99. using namespace cg::static_infer;
  100. auto&& mgr = owner_graph()->static_infer_manager();
  101. for (size_t i = 0; i < input().size(); ++i) {
  102. auto it = mgr.get_infer_type(input(i));
  103. if (!((it.shape & InferType::CONST) &&
  104. mgr.infer_shape(input(i)).is_scalar())) {
  105. if (non_scalar.valid()) {
  106. non_scalar.invalidate();
  107. break;
  108. }
  109. non_scalar = i;
  110. }
  111. }
  112. if (non_scalar.valid()) {
  113. // exactly one input is non-scalar
  114. m_input_broadcastable[non_scalar.val()] = false;
  115. }
  116. }
  117. if (inputs.size() && inputs[0]->dtype().category() == DTypeCategory::QUANTIZED) {
  118. mgb_assert(
  119. param.mode == Param::Mode::ADD || param.mode == Param::Mode::SUB ||
  120. param.mode == Param::Mode::NEGATE ||
  121. param.mode == Param::Mode::RELU ||
  122. param.mode == Param::Mode::MAX ||
  123. param.mode == Param::Mode::MIN,
  124. "Only ADD, SUB, NEGATE, RELU, MAX and MIN is guaranteed "
  125. "to be supported on Elemwise for quantized DType, no support %d",
  126. (int)param.mode);
  127. }
  128. }
  129. SymbolVar Elemwise::make(
  130. const VarNodeArrayView& inputs, Param param, const OperatorNodeConfig& config) {
  131. auto trait = ModeTrait::from_mode(param.mode);
  132. mgb_assert(
  133. inputs.size() == trait.arity, "%s expects %u inputs; got %zu actually",
  134. trait.name, trait.arity, inputs.size());
  135. intl::BatchedDTypePromotion dtp{inputs};
  136. if (dtp.get_dtype().category() == DTypeCategory::INT && !trait.allow_int) {
  137. dtp.set_dtype(dtype::Float32());
  138. }
  139. mgb_throw_if(
  140. dtp.get_dtype().category() == DTypeCategory::FLOAT && !trait.allow_float,
  141. ConversionError,
  142. "elemwise mode %s does not allow float input; "
  143. "got inputs: %s",
  144. trait.name, cg::dump_var_info(inputs).c_str());
  145. #if !MGB_BUILD_SLIM_SERVING
  146. auto&& options = inputs[0]->owner_graph()->options();
  147. if (options.graph_opt_level && !(options.disable_inplace_arith_opt)) {
  148. auto repl = gopt::optimize_elemwise_expr_inplace(dtp.get_vars(), param, config);
  149. if (repl)
  150. return repl;
  151. }
  152. #endif
  153. return SymbolVar{inputs[0]}.insert_single_output_opr<Elemwise>(
  154. trait, dtp.get_vars(), param, config);
  155. }
  156. TensorShape Elemwise::get_output_var_shape(
  157. Mode mode, const TensorShapeArray& input_shapes) {
  158. mgb_assert(input_shapes.size() == ModeTrait::from_mode(mode).arity);
  159. TensorShape ret;
  160. megdnn::Elemwise::deduce_shape(input_shapes, ret);
  161. return ret;
  162. }
  163. void Elemwise::perform(
  164. Mode mode, DeviceTensorND& dest, const SmallVector<DeviceTensorND>& inputs,
  165. intl::UniqPtrWithCN<megdnn::Elemwise>& opr) {
  166. megdnn::TensorNDArray dnn_inputs(inputs.size());
  167. TensorShapeArray inp_shapes(inputs.size());
  168. DType out_dt;
  169. CompNode out_cn;
  170. for (size_t i = 0; i < inputs.size(); ++i) {
  171. auto&& t = inputs[i];
  172. if (!i) {
  173. out_cn = t.comp_node();
  174. out_dt = t.dtype();
  175. } else {
  176. mgb_assert(t.comp_node() == out_cn);
  177. mgb_assert(t.dtype() == out_dt);
  178. }
  179. if (t.shape().is_empty()) {
  180. mgb_assert(dest.empty());
  181. return;
  182. }
  183. inp_shapes[i] = t.shape();
  184. }
  185. if (!opr) {
  186. opr = intl::create_megdnn_opr<megdnn::Elemwise>(out_cn);
  187. } else {
  188. mgb_assert(out_cn == opr.comp_node());
  189. }
  190. out_cn.activate();
  191. for (size_t i = 0; i < inputs.size(); ++i)
  192. dnn_inputs[i] = inputs[i].as_megdnn();
  193. dest.comp_node(out_cn).dtype(out_dt).resize(get_output_var_shape(mode, inp_shapes));
  194. opr->param() = {mode};
  195. call_megdnn_opr_exec(out_cn, dnn_inputs, dest.as_megdnn(), opr.get(), nullptr);
  196. }
  197. void Elemwise::perform_dnn(
  198. CompNode cn, const megdnn::TensorND& dest, megdnn::TensorNDArray& inputs,
  199. intl::UniqPtrWithCN<megdnn::Elemwise>& opr) {
  200. call_megdnn_opr_exec(cn, inputs, dest, opr.get(), nullptr);
  201. }
  202. TensorLayoutArray Elemwise::collective_collapse(const TensorLayoutArray& layouts) {
  203. TensorLayoutPtrArray inp(layouts.size());
  204. TensorLayoutArray result(inp.size());
  205. for (size_t i = 0; i < layouts.size(); ++i) {
  206. result[i] = layouts[i];
  207. inp[i] = &result[i];
  208. }
  209. collective_collapse_inplace(inp);
  210. return result;
  211. }
  212. void Elemwise::collective_collapse_inplace(const TensorLayoutPtrArray& layouts) {
  213. mgb_assert(layouts.size());
  214. size_t ndim = layouts[0]->ndim;
  215. for (auto i : layouts) {
  216. if (i->ndim != ndim)
  217. mgb_throw(MegBrainError, "ndims must be same");
  218. }
  219. auto update_all = [&layouts](size_t axis) {
  220. for (auto i : layouts) {
  221. i->shape[axis] *= i->shape[axis + 1];
  222. i->stride[axis] = i->stride[axis + 1];
  223. i->remove_axis_inplace(axis + 1);
  224. }
  225. };
  226. auto check = [&layouts](size_t axis) -> bool {
  227. auto std_p =
  228. std::make_pair(layouts[0]->shape[axis], layouts[0]->shape[axis + 1]);
  229. for (auto i : layouts) {
  230. auto cur_p = std::make_pair(i->shape[axis], i->shape[axis + 1]);
  231. if (std_p != cur_p)
  232. return false;
  233. if (i->stride[axis] !=
  234. i->stride[axis + 1] * static_cast<ptrdiff_t>(i->shape[axis + 1]))
  235. return false;
  236. }
  237. return true;
  238. };
  239. for (int i = static_cast<int>(ndim) - 2; i >= 0; i--) {
  240. if (check(i)) {
  241. update_all(i);
  242. }
  243. }
  244. }
  245. void Elemwise::broadcast_collective_collapse(
  246. const TensorLayoutPtrArray& inp_layouts, TensorLayout* target_layout) {
  247. for (auto&& p : inp_layouts) {
  248. *p = p->broadcast(*target_layout);
  249. }
  250. TensorLayoutPtrArray buf(inp_layouts.size() + 1);
  251. buf[0] = target_layout;
  252. for (size_t i = 0; i < inp_layouts.size(); i++) {
  253. buf[i + 1] = inp_layouts[i];
  254. }
  255. collective_collapse_inplace(buf);
  256. }
  257. void Elemwise::mem_plan_fwd_in2out_writable() {
  258. mixin_mem_plan_fwd_in2out_writable(*this);
  259. }
  260. void Elemwise::scn_do_execute() {
  261. auto&& inp = input();
  262. megdnn::TensorNDArray dnn_inp;
  263. mgb_assert(dnn_inp.capacity() >= inp.size(), "heap allocation in elemwise exec");
  264. dnn_inp.resize(inp.size());
  265. for (size_t i = 0; i < inp.size(); ++i) {
  266. if (inp[i]->dev_tensor().empty()) {
  267. mgb_assert(output(0)->dev_tensor().empty());
  268. return;
  269. }
  270. dnn_inp[i] = (inp[i]->dev_tensor().as_megdnn());
  271. }
  272. mgb_assert(!output(0)->dev_tensor().empty());
  273. megdnn_opr()->param() = param();
  274. call_megdnn_opr_exec(
  275. comp_node(), dnn_inp, output(0)->dev_tensor().as_megdnn(), megdnn_opr(),
  276. this);
  277. }
  278. void Elemwise::init_output_static_infer_desc() {
  279. Super::init_output_static_infer_desc();
  280. static StaticInferOpr<megdnn::Elemwise> static_infer_opr;
  281. using namespace cg::static_infer;
  282. auto infer_value = [this](DeviceTensorND& dest, const InpVal& inp) {
  283. SmallVector<DeviceTensorND> inp_vals(inp.val.size());
  284. for (size_t i = 0; i < inp_vals.size(); ++i)
  285. inp_vals[i] = inp.val[i].value();
  286. auto sopr = static_infer_opr.lock();
  287. perform(param().mode, dest, inp_vals, sopr());
  288. return true;
  289. };
  290. DepVal deps(input().size());
  291. for (size_t i = 0; i < input().size(); ++i)
  292. deps[i] = {input(i), DepType::VALUE};
  293. owner_graph()->static_infer_manager().register_value_infer(
  294. output(0), {SourceType::DEP, deps, infer_value});
  295. }
  296. void Elemwise::get_output_var_shape(
  297. const TensorShapeArray& inp_shape, TensorShapeArray& out_shape) const {
  298. out_shape.at(0) = get_output_var_shape(param().mode, inp_shape);
  299. for (size_t i = 0; i < input().size(); ++i) {
  300. mgb_throw_if(
  301. !m_input_broadcastable[i] && !out_shape[0].eq_shape(inp_shape[i]),
  302. GraphError,
  303. "input %zu declared to be non-broadcastable but broacast "
  304. "actually happened",
  305. i);
  306. }
  307. }
  308. void Elemwise::add_input_layout_constraint() {
  309. for (auto i : input()) {
  310. i->add_layout_constraint_monotone();
  311. }
  312. }
  313. void Elemwise::call_megdnn_opr_exec(
  314. CompNode comp_node, megdnn::TensorNDArray& inp, const megdnn::TensorND& out,
  315. megdnn::Elemwise* opr, Elemwise* caller) {
  316. if (opr->param().mode == Mode::FUSE_MUL_ADD3 &&
  317. !(inp[2].layout.eq_layout(inp[0].layout) ||
  318. inp[2].layout.eq_layout(inp[1].layout) || inp[2].layout.is_scalar())) {
  319. if (caller && !caller->fuse_badlayout_warn_printed()) {
  320. mgb_log_debug(
  321. "%s: FUSE_MUL_ADD3 input layouts mismatch: %s %s %s; "
  322. "fallback to normal computing",
  323. caller->cname(), inp[0].layout.to_string().c_str(),
  324. inp[1].layout.to_string().c_str(),
  325. inp[2].layout.to_string().c_str());
  326. caller->m_fuse_badlayout_warn_printed = true;
  327. }
  328. for (auto&& i : inp) {
  329. i.layout = i.layout.broadcast(out.layout);
  330. }
  331. megdnn::TensorNDArray run_inp(2);
  332. auto run = [&](Mode mode, const megdnn::TensorND& i0,
  333. const megdnn::TensorND& i1, const megdnn::TensorND& out) {
  334. run_inp[0] = i0;
  335. run_inp[1] = i1;
  336. opr->param() = {mode};
  337. opr->exec(run_inp, out);
  338. };
  339. auto tmp = intl::get_temp_tensor(
  340. caller ? caller->owner_graph() : nullptr, comp_node, out.layout);
  341. auto tmpv = tmp.as_megdnn();
  342. MGB_TRY {
  343. run(Mode::MUL, inp[0], inp[1], tmpv);
  344. run(Mode::ADD, inp[2], tmpv, out);
  345. }
  346. MGB_FINALLY(opr->param() = {Mode::FUSE_MUL_ADD3});
  347. return;
  348. }
  349. if (opr->param().mode == Mode::FUSE_MUL_ADD4 &&
  350. !(inp[0].layout.eq_layout(inp[2].layout) &&
  351. inp[1].layout.eq_layout(inp[3].layout)) &&
  352. !(inp[0].layout.eq_layout(inp[3].layout) &&
  353. inp[1].layout.eq_layout(inp[2].layout))) {
  354. if (caller && !caller->fuse_badlayout_warn_printed()) {
  355. mgb_log_debug(
  356. "%s: FUSE_MUL_ADD4 input layouts mismatch: %s %s %s %s; "
  357. "fallback to normal computing",
  358. caller->cname(), inp[0].layout.to_string().c_str(),
  359. inp[1].layout.to_string().c_str(),
  360. inp[2].layout.to_string().c_str(),
  361. inp[3].layout.to_string().c_str());
  362. caller->m_fuse_badlayout_warn_printed = true;
  363. }
  364. for (auto&& i : inp) {
  365. i.layout = i.layout.broadcast(out.layout);
  366. }
  367. megdnn::TensorNDArray run_inp(2);
  368. auto run = [&](Mode mode, const megdnn::TensorND& i0,
  369. const megdnn::TensorND& i1, const megdnn::TensorND& out) {
  370. run_inp[0] = i0;
  371. run_inp[1] = i1;
  372. opr->param() = {mode};
  373. opr->exec(run_inp, out);
  374. };
  375. auto tmp = intl::get_temp_tensor(
  376. caller ? caller->owner_graph() : nullptr, comp_node, out.layout);
  377. auto tmpv = tmp.as_megdnn();
  378. MGB_TRY {
  379. run(Mode::MUL, inp[0], inp[1], tmpv);
  380. run(Mode::MUL, inp[2], inp[3], out);
  381. run(Mode::ADD, out, tmpv, out);
  382. }
  383. MGB_FINALLY(opr->param() = {Mode::FUSE_MUL_ADD4});
  384. return;
  385. }
  386. // All Elemwise operations on QuantizedS32/QuantizedS8 are not related to
  387. // scale. MegDNN does not support computing Elemwise for
  388. // QuantizedS32/QuantizedS8, we translate the data type to Int32/Int8 before
  389. // passing to MegDNN.
  390. if (inp.size() && inp[0].layout.dtype.category() == DTypeCategory::QUANTIZED) {
  391. auto inp_dtype = inp[0].layout.dtype;
  392. DType compute_dtype;
  393. if (inp_dtype.enumv() == DTypeEnum::QuantizedS32) {
  394. compute_dtype = dtype::Int32();
  395. } else if (inp_dtype.enumv() == DTypeEnum::QuantizedS8) {
  396. compute_dtype = dtype::Int8();
  397. } else {
  398. mgb_throw(
  399. MegBrainError, "Unsupported Quantized Elemwise Mode %s: %d on %s",
  400. inp[0].layout.dtype.name(), int(opr->param().mode),
  401. comp_node.to_string().c_str());
  402. }
  403. megdnn::TensorNDArray run_inp(inp);
  404. for (size_t i = 0; i < inp.size(); i++) {
  405. run_inp[i].layout.dtype = compute_dtype;
  406. }
  407. megdnn::TensorND run_out = out;
  408. run_out.layout.dtype = compute_dtype;
  409. opr->exec(run_inp, run_out);
  410. return;
  411. }
  412. opr->exec(inp, out);
  413. }
  414. #if MGB_ENABLE_GRAD
  415. MGB_IMPL_OPR_GRAD(Elemwise) {
  416. SymbolVar i[5];
  417. SymbolVar i0(opr.input(0)), i1, i2, out(opr.output(0)), og{out_grad.at(0)}, result;
  418. for (size_t t = 0; t < opr.input().size(); ++t)
  419. i[t] = opr.input()[t];
  420. if (opr.input().size() >= 2)
  421. i1 = opr.input(1);
  422. if (opr.input().size() >= 3)
  423. i2 = opr.input(2);
  424. // negate after reduce, for better performance
  425. bool negate_result = false;
  426. #define RET(_v) \
  427. result = (_v); \
  428. break
  429. #define EL1(_mode, _a) Elemwise::make({_a}, Mode::_mode)
  430. #define EL2(_mode, _a, _b) Elemwise::make({_a, _b}, Mode::_mode)
  431. #define EL3(_mode, _a, _b, _c) Elemwise::make({_a, _b, _c}, Mode::_mode)
  432. #define RET_INVALID() return InvalidGrad::make(opr, wrt_idx)
  433. using Mode = Elemwise::Mode;
  434. switch (opr.param().mode) {
  435. // unary
  436. case Mode::RELU:
  437. case Mode::FUSE_ADD_RELU:
  438. RET(EL2(SWITCH_GT0, out, og));
  439. case Mode::ABS:
  440. RET(EL2(ABS_GRAD, i0, og));
  441. case Mode::ACOS:
  442. negate_result = true;
  443. RET(og / EL1(SIN, out));
  444. case Mode::ASIN:
  445. RET(og / EL1(COS, out));
  446. case Mode::ATAN2:
  447. if (wrt_idx) {
  448. negate_result = true;
  449. }
  450. RET(og * i[!wrt_idx] / (i0 * i0 + i1 * i1));
  451. case Mode::CEIL:
  452. return nullptr;
  453. case Mode::COS:
  454. negate_result = true;
  455. RET(EL1(SIN, i0) * og);
  456. case Mode::EXP:
  457. RET(og * out);
  458. case Mode::EXPM1:
  459. RET(og * EL1(EXP, i0));
  460. case Mode::FLOOR:
  461. return nullptr;
  462. case Mode::LOG:
  463. RET(og / i0);
  464. case Mode::LOG1P:
  465. RET(og / (i0 + 1));
  466. case Mode::NEGATE:
  467. negate_result = true;
  468. RET(og);
  469. case Mode::SIGMOID:
  470. case Mode::FUSE_ADD_SIGMOID:
  471. RET(EL2(SIGMOID_GRAD, out, og));
  472. case Mode::SIN:
  473. RET(EL1(COS, i0) * og);
  474. case Mode::TANH:
  475. case Mode::FUSE_ADD_TANH:
  476. RET(EL2(TANH_GRAD, out, og));
  477. case Mode::FAST_TANH:
  478. RET(EL2(FAST_TANH_GRAD, i0, og));
  479. case Mode::ROUND:
  480. return nullptr;
  481. case Mode::ERF:
  482. RET(EL1(EXP, -i0 * i0) * 2 / static_cast<float>(sqrt(M_PI)) * og);
  483. case Mode::ERFINV:
  484. RET(EL1(EXP, out * out) * static_cast<float>(sqrt(M_PI)) / 2 * og);
  485. case Mode::ERFC:
  486. RET(-EL1(EXP, -i0 * i0) * 2 / static_cast<float>(sqrt(M_PI)) * og);
  487. case Mode::H_SWISH:
  488. RET(EL2(H_SWISH_GRAD, i0, og));
  489. case Mode::FUSE_ADD_H_SWISH:
  490. RET(EL2(H_SWISH_GRAD, (i0 + i1), og));
  491. case Mode::NOT:
  492. return nullptr;
  493. case Mode::SILU:
  494. RET(EL2(SILU_GRAD, i0, og));
  495. case Mode::GELU:
  496. RET(EL2(GELU_GRAD, i0, og));
  497. case Mode::SINH:
  498. RET(EL1(COSH, i0) * og);
  499. case Mode::COSH:
  500. RET(EL1(SINH, i0) * og);
  501. case Mode::ASINH:
  502. RET(EL2(ASINH_GRAD, i0, og));
  503. case Mode::ACOSH:
  504. RET(EL2(ACOSH_GRAD, i0, og));
  505. case Mode::ATANH:
  506. RET(EL2(ATANH_GRAD, i0, og));
  507. case Mode::TAN: {
  508. auto two = i0.make_scalar_dt(2);
  509. RET(og / (EL2(POW, EL1(COS, i0), two)));
  510. }
  511. case Mode::RELU6:
  512. RET(EL2(RELU6_GRAD, i0, og));
  513. case Mode::SOFTPLUS:
  514. RET(EL2(SOFTPLUS_GRAD, i0, og));
  515. case Mode::HSIGMOID:
  516. RET(EL2(HSIGMOID_GRAD, i0, og));
  517. case Mode::LOGSIGMOID:
  518. RET(EL2(SOFTPLUS_GRAD, EL1(NEGATE, i0), og));
  519. case Mode::SQRT:
  520. RET(og / EL1(SQRT, i0) / 2);
  521. case Mode::SQUARE:
  522. RET(og * 2 * i0);
  523. case Mode::SIGN:
  524. RET(i0.make_scalar_dt(0).broadcast(i0.symshape()));
  525. // binary
  526. case Mode::ABS_GRAD:
  527. if (wrt_idx == 0) {
  528. return nullptr;
  529. }
  530. RET(EL2(ABS_GRAD, i0, og));
  531. case Mode::ADD:
  532. RET(og);
  533. case Mode::SAFE_DIV:
  534. RET_INVALID();
  535. case Mode::FLOOR_DIV:
  536. return nullptr;
  537. case Mode::MAX:
  538. if (wrt_idx) {
  539. RET(EL3(COND_LT_MOV, i[0], i[1], og));
  540. } else {
  541. RET(EL3(COND_LEQ_MOV, i[1], i[0], og));
  542. }
  543. case Mode::MIN:
  544. if (wrt_idx) {
  545. RET(EL3(COND_LT_MOV, i[1], i[0], og));
  546. } else {
  547. RET(EL3(COND_LEQ_MOV, i[0], i[1], og));
  548. }
  549. case Mode::MOD:
  550. if (wrt_idx == 0) {
  551. RET(og);
  552. }
  553. RET_INVALID();
  554. case Mode::MUL:
  555. RET(og * i[!wrt_idx]);
  556. case Mode::POW:
  557. if (wrt_idx) {
  558. RET(out * EL1(LOG, i0) * og);
  559. }
  560. RET(og * i1 * EL2(POW, i0, i1 - 1));
  561. case Mode::SIGMOID_GRAD:
  562. if (wrt_idx == 0) {
  563. auto one = i0.make_scalar_dt(1), two = i0.make_scalar_dt(2);
  564. RET((one - i0 * two) * i1 * og);
  565. }
  566. RET(EL2(SIGMOID_GRAD, i0, og));
  567. case Mode::SUB:
  568. negate_result = wrt_idx;
  569. RET(og);
  570. case Mode::SWITCH_GT0:
  571. if (!wrt_idx)
  572. return nullptr;
  573. RET(EL2(SWITCH_GT0, i0, og));
  574. case Mode::TANH_GRAD:
  575. if (wrt_idx == 0) {
  576. auto mtwo = i0.make_scalar_dt(-2);
  577. RET(mtwo * i0 * i1 * og);
  578. }
  579. RET(EL2(TANH_GRAD, i0, og));
  580. case Mode::TRUE_DIV:
  581. if (wrt_idx == 0) {
  582. RET(og / i1);
  583. }
  584. negate_result = true;
  585. RET((og * i0) * EL2(POW, i1, i1.make_scalar(-2)));
  586. case Mode::LOG_SUM_EXP:
  587. if (wrt_idx == 0) {
  588. RET(og * EL1(SIGMOID, i0 - i1));
  589. }
  590. RET(og * EL1(SIGMOID, i1 - i0));
  591. case Mode::LT:
  592. case Mode::LEQ:
  593. return nullptr;
  594. case Mode::EQ:
  595. RET_INVALID();
  596. case Mode::OR:
  597. case Mode::XOR:
  598. case Mode::AND:
  599. return nullptr;
  600. case Mode::PRELU:
  601. if (wrt_idx == 0) {
  602. RET(EL3(PRELU_GRAD, i0, og, i1));
  603. }
  604. RET(EL2(SWITCH_GT0, -i0, og * i0));
  605. // ternary
  606. case Mode::COND_LEQ_MOV:
  607. if (wrt_idx <= 1)
  608. return nullptr;
  609. RET(EL3(COND_LEQ_MOV, i0, i1, og));
  610. case Mode::COND_LT_MOV:
  611. if (wrt_idx <= 1)
  612. return nullptr;
  613. RET(EL3(COND_LT_MOV, i0, i1, og));
  614. case Mode::CLIP:
  615. if (wrt_idx == 0) {
  616. RET(EL3(COND_LEQ_MOV, i1, i0, EL3(COND_LEQ_MOV, i0, i2, og)));
  617. }
  618. if (wrt_idx == 1) {
  619. RET(EL3(COND_LEQ_MOV, i0, i1, og));
  620. }
  621. RET(EL3(COND_LEQ_MOV, i2, i0, og));
  622. // fuse oprs
  623. case Mode::FUSE_MUL_ADD3:
  624. if (wrt_idx < 2) {
  625. RET(og * i[wrt_idx ^ 1]);
  626. } else {
  627. RET(og);
  628. }
  629. case Mode::FUSE_MUL_ADD4:
  630. RET(og * i[wrt_idx ^ 1]);
  631. default:
  632. mgb_throw(
  633. GraphError, "grad for elemwise mode %s unimplemented",
  634. megdnn::Elemwise::ModeTrait::from_mode(opr.param().mode).name);
  635. }
  636. #undef EL3
  637. #undef EL2
  638. #undef EL1
  639. #undef RET
  640. if (opr.input_broadcastable()[wrt_idx]) {
  641. result = reduce_sum(result, opr::GetVarShape::make(opr.input(wrt_idx)));
  642. } else if (result.node()->owner_opr()->same_type<Broadcast>()) {
  643. // forward broadcast for optimizer to work
  644. result = opr::Broadcast::make(
  645. result.node()->owner_opr()->input(0),
  646. opr::GetVarShape::make(i[wrt_idx]));
  647. }
  648. if (negate_result)
  649. result = -result;
  650. return result.node();
  651. }
  652. #endif
  653. VarNode* Elemwise::sum_grad_list(VarNode* wrt, VarNodeArray& grads) {
  654. mgb_assert(!grads.empty());
  655. if (grads.size() == 1)
  656. return grads[0];
  657. #if MGB_ENABLE_COND_EXEC
  658. CondExecMerge::modify_grad_sum_list(wrt, grads);
  659. #endif
  660. VarNodeArray mid_results;
  661. VarNode* ret;
  662. if (wrt->owner_graph()->options().graph_opt_level) {
  663. ret = gopt::GradSumListOptimizer{wrt, grads, mid_results}.get_sum();
  664. } else {
  665. ret = gopt::elemwise_reduce_var_list(grads, Elemwise::Mode::ADD, &mid_results);
  666. }
  667. mid_results.swap(grads);
  668. return ret;
  669. }
  670. void Elemwise::record_execute_deps(ExecDependencyArray& deps) {
  671. record_megdnn_opr(deps);
  672. }
  673. Elemwise::NodeProp* Elemwise::do_make_node_prop() const {
  674. auto ret = Super::do_make_node_prop();
  675. for (auto& inp : input()) {
  676. ret->add_dep_type_existing_var(inp, NodeProp::DepType::VALUE_ALLOW_EMPTY);
  677. }
  678. return ret;
  679. }
  680. /* =========================== TypeCvt =========================== */
  681. MGB_DYN_TYPE_OBJ_FINAL_IMPL(TypeCvt);
  682. TypeCvt::TypeCvt(VarNode* inp, DType dest_type, const OperatorNodeConfig& config)
  683. : Super{inp->owner_graph(),
  684. config,
  685. std::string("as") + dest_type.name(),
  686. {inp}} {
  687. init_megdnn_opr(*this, {});
  688. mgb_assert(dest_type.valid());
  689. add_input({inp});
  690. add_equivalence_component<ScalarHash<const void*>>(dest_type.handle());
  691. output(0)->dtype(dest_type).add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
  692. }
  693. SymbolVar TypeCvt::make(
  694. SymbolVar input, DType dest_type, const OperatorNodeConfig& config) {
  695. if (input.dtype() == dest_type)
  696. return input;
  697. return input.insert_single_output_opr<TypeCvt>(input.node(), dest_type, config);
  698. }
  699. void TypeCvt::perform(
  700. DeviceTensorND& dest, DType dest_type, const DeviceTensorND& src,
  701. intl::UniqPtrWithCN<megdnn::TypeCvt>& opr) {
  702. mgb_assert(src.comp_node() == opr.comp_node());
  703. mgb_assert(dest_type.valid());
  704. if (src.empty()) {
  705. mgb_assert(dest.empty());
  706. return;
  707. }
  708. if (src.dtype() == dest_type) {
  709. dest.copy_from(src);
  710. return;
  711. }
  712. src.comp_node().activate();
  713. dest.comp_node(src.comp_node()).dtype(dest_type).resize(src.shape());
  714. opr->exec(src.as_megdnn(), dest.as_megdnn());
  715. }
  716. void TypeCvt::add_input_layout_constraint() {
  717. //! Because the implementation of typecvt on arm/x86/cuda/opencl support
  718. //! non-contiguous memory. So we change constraint of typecvt to monotone
  719. for (auto i : input()) {
  720. i->add_layout_constraint_monotone();
  721. }
  722. }
  723. TypeCvt::NodeProp* TypeCvt::do_make_node_prop() const {
  724. auto ret = Super::do_make_node_prop();
  725. ret->add_dep_type_existing_var(input(0), NodeProp::DepType::VALUE_ALLOW_EMPTY);
  726. return ret;
  727. }
  728. #if MGB_ENABLE_GRAD
  729. MGB_IMPL_OPR_GRAD(TypeCvt) {
  730. MGB_MARK_USED_VAR(wrt_idx);
  731. auto itype = opr.input(0)->dtype(), otype = opr.output(0)->dtype();
  732. if (itype.category() == DTypeCategory::FLOAT &&
  733. otype.category() == DTypeCategory::INT) {
  734. return nullptr;
  735. }
  736. if (itype.category() != DTypeCategory::FLOAT) {
  737. return InvalidGrad::make(opr, 0);
  738. }
  739. return TypeCvt::make(out_grad[0], opr.input(0)->dtype()).node();
  740. }
  741. #endif
  742. void TypeCvt::mem_plan_fwd_in2out_writable() {
  743. bool cond_low_bit = input(0)->dtype().is_low_bit() &&
  744. output(0)->dtype().is_low_bit() &&
  745. input(0)->dtype().low_bit() == output(0)->dtype().low_bit();
  746. bool cond_normal = !input(0)->dtype().is_low_bit() &&
  747. !output(0)->dtype().is_low_bit() &&
  748. input(0)->dtype().size() == output(0)->dtype().size();
  749. if ((cond_low_bit || cond_normal) && input(0)->layout().is_contiguous()) {
  750. output(0)->set_fwd_in2out_writable(input(0));
  751. }
  752. }
  753. void TypeCvt::scn_do_execute() {
  754. auto ovar = output(0)->dev_tensor().as_megdnn();
  755. for (size_t i = 0; i < ovar.layout.ndim; ++i) {
  756. if (!ovar.layout[i]) {
  757. // skip execution for empty var
  758. return;
  759. }
  760. }
  761. megdnn_opr()->exec(input(0)->dev_tensor().as_megdnn(), ovar);
  762. }
  763. void TypeCvt::init_output_static_infer_desc() {
  764. static StaticInferOpr<megdnn::TypeCvt> static_infer_opr;
  765. Super::init_output_static_infer_desc();
  766. using namespace cg::static_infer;
  767. auto infer_value = [this](DeviceTensorND& dest, const InpVal& inp) {
  768. auto sopr = static_infer_opr.lock();
  769. perform(dest, output(0)->dtype(), inp.val.at(0).value(), sopr());
  770. return true;
  771. };
  772. owner_graph()->static_infer_manager().register_value_infer(
  773. output(0), {SourceType::DEP, {{input(0), DepType::VALUE}}, infer_value});
  774. }
  775. void TypeCvt::record_execute_deps(ExecDependencyArray& deps) {
  776. record_megdnn_opr(deps);
  777. }
  778. /* =========================== AddUpdate =========================== */
  779. MGB_DYN_TYPE_OBJ_FINAL_IMPL(AddUpdate);
  780. AddUpdate::AddUpdate(
  781. VarNode* dest, VarNode* delta, const Param& param,
  782. const OperatorNodeConfig& config)
  783. : Super{dest->owner_graph(), config, "inplace_add", {dest, delta}},
  784. m_param{param} {
  785. auto dest_opr = dest->owner_opr();
  786. mgb_throw_if(
  787. dest_opr->same_type<ImmutableTensor>(), GraphError,
  788. "AddUpdate cannot be applied on ImmutableTensor; ");
  789. add_input({dest, delta});
  790. /*
  791. * here we tell the system that output(0) would force-update input(0); the
  792. * topo-sorting system would ensure that all the readers finish before
  793. * executing this AddUpdate operation
  794. */
  795. add_output(None)->set_fwd_in2out_writable_force(input(0)).add_flag(
  796. VarNode::Flag::NO_MEM_RECLAIM);
  797. mgb_assert(
  798. m_param.disable->dtype() == dtype::Int32{},
  799. "dtype of disable flag on AddUpdate must be Int32, got %s actually.",
  800. m_param.disable->dtype().name());
  801. add_equivalence_component<ScalarHash<void*>>(m_param.alpha.get());
  802. add_equivalence_component<ScalarHash<void*>>(m_param.beta.get());
  803. add_equivalence_component<ScalarHash<void*>>(m_param.bias.get());
  804. add_equivalence_component<ScalarHash<void*>>(m_param.disable.get());
  805. }
  806. SymbolVar AddUpdate::make(
  807. SymbolVar dest, SymbolVar delta, const Param& param,
  808. const OperatorNodeConfig& config) {
  809. delta = opr::TypeCvt::make(delta, dest.dtype());
  810. return dest.insert_single_output_opr<AddUpdate>(
  811. dest.node(), delta.node(), param, config);
  812. }
  813. cg::OperatorNodeBase::NodeProp* AddUpdate::do_make_node_prop() const {
  814. auto ret = Super::do_make_node_prop();
  815. ret->add_flag(NodeProp::Flag::FORCE_UPDATE_INPUT_VAR);
  816. return ret;
  817. }
  818. void AddUpdate::create_megdnn_opr() {
  819. set_megdnn_opr(
  820. intl::get_megdnn_handle(comp_node())->create_operator<megdnn::AddUpdate>());
  821. }
  822. void AddUpdate::scn_do_execute() {
  823. mgb_assert(
  824. m_param.disable->dtype() == dtype::Int32{},
  825. "dtype of disable flag on AddUpdate must be Int32, got %s actually.",
  826. m_param.disable->dtype().name());
  827. auto disable = m_param.disable->get_cast<int>();
  828. if (disable == 1)
  829. return;
  830. mgb_assert(
  831. disable == 0,
  832. "disable flag on AddUpdate can only be 0 or 1,"
  833. " got %d actually.",
  834. disable);
  835. auto&& dest = output(0)->dev_tensor();
  836. auto&& delta_nobrd = input(1)->dev_tensor();
  837. auto delta = delta_nobrd.sub(SubTensorSpec::make_from_offset_elem(
  838. delta_nobrd.layout().broadcast(dest.shape()), 0));
  839. mgb_assert(input(0)->dev_tensor().raw_ptr() == dest.raw_ptr());
  840. auto beta = m_param.beta->get_cast<float>();
  841. if (!m_param.alpha->get_cast<bool>() && beta == 1 &&
  842. !m_param.bias->get_cast<bool>()) {
  843. dest.copy_from_fixlayout(delta);
  844. } else {
  845. auto opr = static_cast<megdnn::AddUpdate*>(megdnn_opr());
  846. opr->param() = {
  847. m_param.alpha->get_cast<float>(), beta,
  848. m_param.bias->get_cast<float>()};
  849. opr->exec(dest.as_megdnn(), delta.as_megdnn());
  850. }
  851. }
  852. void AddUpdate::init_output_static_infer_desc() {
  853. using namespace cg::static_infer;
  854. owner_graph()->static_infer_manager().register_shape_infer(
  855. output(0), ShapeInferDesc::make_identity(input(0)));
  856. }
  857. void AddUpdate::record_execute_deps(ExecDependencyArray& deps) {
  858. record_megdnn_opr(deps);
  859. }
  860. #if MGB_ENABLE_GRAD
  861. MGB_IMPL_OPR_GRAD(AddUpdate) {
  862. // actually valid, just not implemented
  863. return InvalidGrad::make(opr, wrt_idx);
  864. }
  865. #endif
  866. /* =========================== Reduce =========================== */
  867. class Reduce::KernScheduler {
  868. class ValueDep final : public ExecDependency {
  869. DeviceTensorStorage m_val;
  870. public:
  871. explicit ValueDep(DeviceTensorStorage val) : m_val(std::move(val)) {}
  872. };
  873. public:
  874. bool has_actual_computing() const {
  875. mgb_assert(m_shape_computed);
  876. return !m_kern_param.empty() || m_apply_side_effect;
  877. }
  878. size_t workspace_size() const { return m_workspace_spec[2].end(); }
  879. bool shape_computed() const { return m_shape_computed; }
  880. //! init shapes in kern param
  881. void init_shapes(
  882. megdnn::Reduce* opr, CompNode comp_node, DType dtype, Mode mode,
  883. TensorShape ishp, TensorShape oshp, const Param::DataType data_type);
  884. void setup_kern_params_layout_and_mode(
  885. Mode mode, DType inp_dtype, TensorShape& inp_shp, const Param::DataType);
  886. void check_shapes(const TensorShape& ishp, const TensorShape& oshp) {
  887. mgb_assert(m_prev_ishp.eq_shape(ishp) && m_prev_oshp.eq_shape(oshp));
  888. }
  889. //! update pointers in kern param; the tensors must have been allocated
  890. void update_ptr(
  891. const DeviceTensorND& input, const DeviceTensorND& dest,
  892. const DeviceTensorND& workspace);
  893. void execute(
  894. megdnn::Reduce* opr, const DeviceTensorND& input,
  895. const DeviceTensorND& dest);
  896. void record_execute_deps(ExecDependencyArray& deps) {
  897. if (m_elemwise_trans_opr) {
  898. deps.emplace_back(std::make_unique<intl::MegDNNGraphDep>(
  899. std::move(m_elemwise_trans_opr)));
  900. }
  901. if (m_typecvt_opr) {
  902. deps.emplace_back(
  903. std::make_unique<intl::MegDNNGraphDep>(std::move(m_typecvt_opr)));
  904. }
  905. deps.emplace_back(std::make_unique<ValueDep>(m_side_affect_wkspc.storage()));
  906. }
  907. private:
  908. struct KernParam {
  909. megdnn::TensorND input, output;
  910. //! param passed to megdnn
  911. megdnn::param::Reduce kparam;
  912. megdnn::Workspace workspace;
  913. KernParam(Mode mode, int32_t ra) : kparam{mode, ra} {}
  914. };
  915. struct SubWorkspace {
  916. size_t size, offset;
  917. size_t end() const { return size + offset; }
  918. };
  919. void update_kparam_for_elemwise_side_effect(
  920. CompNode comp_node, Mode mode, const Param::DataType data_type);
  921. bool m_shape_computed = false;
  922. std::vector<KernParam> m_kern_param;
  923. TensorShape m_prev_ishp, m_prev_oshp;
  924. SubWorkspace m_workspace_spec[3]; //! tmp output[2], kern workspce
  925. /*!
  926. * some reduce mode (like SUM_SQR) has side effect of element-wise
  927. * trans. If this is the case and there is no kernel param,
  928. * m_apply_side_effect would be non-null
  929. */
  930. thin_function<void(const DeviceTensorND& in, const DeviceTensorND& out)>
  931. m_apply_side_effect;
  932. std::unique_ptr<megdnn::Elemwise> m_elemwise_trans_opr;
  933. std::unique_ptr<megdnn::TypeCvt> m_typecvt_opr;
  934. std::unique_ptr<megdnn::Fill> m_fill_opr;
  935. DeviceTensorND m_side_affect_wkspc;
  936. };
  937. void Reduce::KernScheduler::setup_kern_params_layout_and_mode(
  938. Mode mode, DType inp_dtype, TensorShape& ishp,
  939. const Param::DataType data_type) {
  940. auto prev_dtype = inp_dtype;
  941. for (size_t idx = 0; idx < m_kern_param.size(); ++idx) {
  942. auto&& i = m_kern_param[idx];
  943. #if !MEGDNN_DISABLE_FLOAT16
  944. if (idx == 0 && data_type == Param::DataType::FLOAT_O32xC32) {
  945. i.input.layout.dtype = inp_dtype;
  946. i.output.layout.dtype = dtype::Float32();
  947. i.kparam.data_type = data_type;
  948. } else if (data_type == Param::DataType::FLOAT_O16xC32) {
  949. i.input.layout.dtype = prev_dtype;
  950. if (idx + 1 == m_kern_param.size()) {
  951. i.output.layout.dtype = dtype::Float16();
  952. i.kparam.data_type = data_type;
  953. } else {
  954. i.output.layout.dtype = dtype::Float32();
  955. i.kparam.data_type = Param::DataType::FLOAT_O32xC32;
  956. }
  957. } else
  958. #endif
  959. {
  960. mgb_assert(
  961. data_type == Param::DataType::DEFAULT ||
  962. (data_type == Param::DataType::FLOAT_O32xC32 && idx));
  963. i.input.layout.dtype = prev_dtype;
  964. i.output.layout.dtype = prev_dtype;
  965. i.kparam.data_type = Param::DataType::DEFAULT;
  966. }
  967. prev_dtype = i.output.layout.dtype;
  968. i.input.layout.init_contiguous_stride(ishp);
  969. ishp.shape[i.kparam.axis] = 1;
  970. i.output.layout.init_contiguous_stride(ishp);
  971. }
  972. if (mode == Mode::SUM_SQR) {
  973. for (size_t i = 1; i < m_kern_param.size(); ++i)
  974. m_kern_param[i].kparam.mode = Mode::SUM;
  975. }
  976. }
  977. void Reduce::KernScheduler::init_shapes(
  978. megdnn::Reduce* opr, CompNode comp_node, DType inp_dtype, Mode mode,
  979. TensorShape ishp, TensorShape oshp, const Param::DataType data_type) {
  980. mgb_assert(ishp.ndim && oshp.ndim);
  981. if (ishp.eq_shape(m_prev_ishp) && oshp.eq_shape(m_prev_oshp))
  982. return;
  983. m_prev_ishp = ishp;
  984. m_prev_oshp = oshp;
  985. m_kern_param.clear();
  986. if (oshp.is_scalar()) {
  987. // if ishp is non-contiguous, add_layout_constraint_contiguous would be
  988. // added; so we do not have to worry about this
  989. ishp.shape[0] = ishp.total_nr_elems();
  990. ishp.ndim = 1;
  991. }
  992. mgb_assert(
  993. oshp.ndim == ishp.ndim,
  994. "input and output ndim mismatch for reduction: ishp=%s oshp=%s",
  995. ishp.to_string().c_str(), oshp.to_string().c_str());
  996. for (size_t i = 0; i < ishp.ndim; ++i) {
  997. if (ishp.shape[i] != oshp.shape[i]) {
  998. mgb_assert(
  999. oshp.shape[i] == 1,
  1000. "input and output shape mismatch for reduction: "
  1001. "ishp=%s oshp=%s",
  1002. ishp.to_string().c_str(), oshp.to_string().c_str());
  1003. }
  1004. }
  1005. auto remove_axis = [](TensorShape& shp, size_t ax) {
  1006. mgb_assert(shp.ndim > 1);
  1007. for (auto i = ax + 1; i < shp.ndim; ++i)
  1008. shp.shape[i - 1] = shp.shape[i];
  1009. --shp.ndim;
  1010. };
  1011. // collapse consecutive shape-1 axes in oshp
  1012. for (size_t i = 0; i < oshp.ndim; ++i) {
  1013. auto start = i;
  1014. while (i < oshp.ndim && oshp.shape[i] == 1)
  1015. ++i;
  1016. if (start + 1 < i) {
  1017. for (auto j = start + 1; j < i; ++j)
  1018. ishp.shape[start] *= ishp.shape[j];
  1019. for (auto j = start + 1; j < i; ++j) {
  1020. remove_axis(ishp, start + 1);
  1021. remove_axis(oshp, start + 1);
  1022. }
  1023. i = start;
  1024. }
  1025. }
  1026. for (uint32_t i = 0; i < ishp.ndim; ++i) {
  1027. if (ishp.shape[i] != oshp.shape[i]) {
  1028. mgb_assert(oshp.shape[i] == 1);
  1029. m_kern_param.push_back({mode, static_cast<int32_t>(i)});
  1030. }
  1031. }
  1032. // sort according to reduction size, so workspace can be smaller
  1033. small_sort(
  1034. m_kern_param.begin(), m_kern_param.end(),
  1035. [&](const KernParam& a, const KernParam& b) {
  1036. return ishp.shape[a.kparam.axis] > ishp.shape[b.kparam.axis];
  1037. });
  1038. // init kparam input/output layout
  1039. setup_kern_params_layout_and_mode(mode, inp_dtype, ishp, data_type);
  1040. // init workspace size
  1041. memset(m_workspace_spec, 0, sizeof(m_workspace_spec));
  1042. for (auto&& i : m_kern_param) {
  1043. opr->param() = i.kparam;
  1044. i.workspace.size = opr->get_workspace_in_bytes(i.input.layout, i.output.layout);
  1045. update_max(m_workspace_spec[2].size, i.workspace.size);
  1046. }
  1047. mgb_assert(ishp.eq_shape(oshp));
  1048. if (m_kern_param.size() >= 2) {
  1049. m_workspace_spec[0].size = m_kern_param[1].input.layout.span().high_byte;
  1050. }
  1051. if (m_kern_param.size() >= 3) {
  1052. m_workspace_spec[1].size = m_kern_param[2].input.layout.span().high_byte;
  1053. }
  1054. auto align = comp_node.get_mem_addr_alignment();
  1055. for (int i = 0; i < 2; ++i) {
  1056. m_workspace_spec[i + 1].offset =
  1057. get_aligned_power2(m_workspace_spec[i].end(), align);
  1058. }
  1059. update_kparam_for_elemwise_side_effect(comp_node, mode, data_type);
  1060. m_shape_computed = true;
  1061. }
  1062. void Reduce::KernScheduler::update_kparam_for_elemwise_side_effect(
  1063. CompNode comp_node, Mode mode, const Param::DataType data_type) {
  1064. m_apply_side_effect = nullptr;
  1065. m_elemwise_trans_opr.reset();
  1066. m_typecvt_opr.reset();
  1067. if (!m_kern_param.empty()) {
  1068. // no need to set m_apply_side_effect
  1069. return;
  1070. } /* else */
  1071. // case A: input.layout == output.layout
  1072. // case B: input.total_nr_elems == 1 and output is a scalar
  1073. if (mode == Mode::SUM_SQR) {
  1074. m_elemwise_trans_opr =
  1075. intl::get_megdnn_handle(comp_node)->create_operator<megdnn::Elemwise>();
  1076. m_elemwise_trans_opr->param() = {Elemwise::Mode::MUL};
  1077. }
  1078. if (data_type != Param::DataType::DEFAULT) {
  1079. m_side_affect_wkspc = DeviceTensorND{comp_node, dtype::Float32()};
  1080. m_typecvt_opr =
  1081. intl::get_megdnn_handle(comp_node)->create_operator<megdnn::TypeCvt>();
  1082. }
  1083. if (!m_typecvt_opr && !m_elemwise_trans_opr)
  1084. return;
  1085. m_apply_side_effect = [this](const DeviceTensorND& in, const DeviceTensorND& out) {
  1086. if (m_typecvt_opr) {
  1087. m_side_affect_wkspc.resize(in.shape());
  1088. }
  1089. if (!m_elemwise_trans_opr) {
  1090. mgb_assert(m_typecvt_opr);
  1091. m_typecvt_opr->exec(in.as_megdnn(), out.as_megdnn());
  1092. return;
  1093. }
  1094. auto im = in.as_megdnn();
  1095. megdnn::TensorND wm;
  1096. if (m_typecvt_opr && in.dtype() != m_side_affect_wkspc.dtype()) {
  1097. m_side_affect_wkspc.resize(in.shape());
  1098. wm = m_side_affect_wkspc.as_megdnn();
  1099. m_typecvt_opr->exec(im, wm);
  1100. } else {
  1101. wm = im;
  1102. }
  1103. if (m_typecvt_opr && wm.layout.dtype != out.dtype()) {
  1104. m_elemwise_trans_opr->exec({wm, wm}, wm);
  1105. m_typecvt_opr->exec(wm, out.as_megdnn());
  1106. } else {
  1107. auto&& wshp = wm.layout;
  1108. if (wshp.ndim != out.layout().ndim) {
  1109. // to ensure that wkspc.ndim equals out.ndim in the case:
  1110. // wkspc.shape=(1, 1, ..., 1) and out.shape=(1), otherwise it
  1111. // may lead the 'TensorShape Dimension' assertion failed in
  1112. // the following broadcast operator
  1113. mgb_assert(wshp.total_nr_elems() == 1 && out.layout().ndim == 1);
  1114. wshp.ndim = 1;
  1115. }
  1116. m_elemwise_trans_opr->exec({wm, wm}, out.as_megdnn());
  1117. }
  1118. };
  1119. }
  1120. void Reduce::KernScheduler::update_ptr(
  1121. const DeviceTensorND& input, const DeviceTensorND& dest,
  1122. const DeviceTensorND& workspace) {
  1123. auto dtype = dest.layout().dtype;
  1124. mgb_assert(dtype.valid());
  1125. mgb_assert(m_shape_computed);
  1126. if (workspace_size()) {
  1127. mgb_assert(
  1128. workspace.layout().dtype == dtype::Byte() &&
  1129. workspace.layout().ndim == 1 &&
  1130. workspace.shape()[0] >= workspace_size());
  1131. }
  1132. if (m_kern_param.empty())
  1133. return;
  1134. mgb_assert(
  1135. input.layout().total_nr_elems() ==
  1136. m_kern_param[0].input.layout.total_nr_elems());
  1137. mgb_assert(
  1138. dest.shape().total_nr_elems() ==
  1139. m_kern_param.back().output.layout.total_nr_elems());
  1140. auto in_tensor = input.as_megdnn();
  1141. in_tensor.layout = m_kern_param[0].input.layout;
  1142. m_kern_param[0].input = in_tensor;
  1143. dt_byte *workspace_begin = workspace_size()
  1144. ? const_cast<dt_byte*>(workspace.raw_ptr())
  1145. : nullptr,
  1146. *tmp_reduce_ptr[2] =
  1147. {workspace_begin + m_workspace_spec[0].offset,
  1148. workspace_begin + m_workspace_spec[1].offset},
  1149. *kern_workspace = workspace_begin + m_workspace_spec[2].offset;
  1150. for (size_t i = 0; i < m_kern_param.size() - 1; ++i) {
  1151. auto optr = tmp_reduce_ptr[i % 2];
  1152. m_kern_param[i].output.reset_ptr(optr);
  1153. m_kern_param[i + 1].input.reset_ptr(optr);
  1154. }
  1155. for (auto&& i : m_kern_param)
  1156. i.workspace.raw_ptr = kern_workspace;
  1157. auto out_tensor = dest.as_megdnn();
  1158. out_tensor.layout = m_kern_param.back().output.layout;
  1159. m_kern_param.back().output = out_tensor;
  1160. }
  1161. void Reduce::KernScheduler::execute(
  1162. megdnn::Reduce* opr, const DeviceTensorND& input, const DeviceTensorND& dest) {
  1163. if (m_apply_side_effect) {
  1164. mgb_assert(m_kern_param.empty());
  1165. m_apply_side_effect(input, dest);
  1166. return;
  1167. }
  1168. mgb_assert(!m_kern_param.empty());
  1169. // empty input
  1170. if (input.shape_valid() && input.empty()) {
  1171. auto mode = m_kern_param[0].kparam.mode;
  1172. if (!m_fill_opr) {
  1173. m_fill_opr = intl::get_megdnn_handle(dest.comp_node())
  1174. ->create_operator<megdnn::Fill>();
  1175. }
  1176. std::string err_msg;
  1177. switch (mode) {
  1178. case Reduce::Mode::SUM:
  1179. if (!dest.empty()) {
  1180. m_fill_opr->param() = 0;
  1181. m_fill_opr->exec(dest.as_megdnn(), {});
  1182. }
  1183. break;
  1184. case Reduce::Mode::PRODUCT:
  1185. if (!dest.empty()) {
  1186. m_fill_opr->param() = 1;
  1187. m_fill_opr->exec(dest.as_megdnn(), {});
  1188. }
  1189. break;
  1190. case Reduce::Mode::MEAN:
  1191. err_msg = "mean";
  1192. break;
  1193. case Reduce::Mode::MIN:
  1194. err_msg = "min";
  1195. break;
  1196. case Reduce::Mode::MAX:
  1197. err_msg = "max";
  1198. break;
  1199. case Reduce::Mode::SUM_SQR:
  1200. err_msg = "sum_sqr";
  1201. break;
  1202. default:
  1203. mgb_throw(MegBrainError, "bad reduce mode");
  1204. }
  1205. if (!err_msg.empty()) {
  1206. mgb_throw(
  1207. MegBrainError, "empty input is not allowed for reduce mode: %s",
  1208. err_msg.c_str());
  1209. }
  1210. return;
  1211. }
  1212. mgb_assert(
  1213. input.layout().is_contiguous() &&
  1214. input.raw_ptr() == m_kern_param[0].input.raw_ptr() &&
  1215. dest.raw_ptr() == m_kern_param.back().output.raw_ptr());
  1216. for (auto&& i : m_kern_param) {
  1217. opr->param() = i.KernParam::kparam;
  1218. opr->exec(i.input, i.output, i.workspace);
  1219. }
  1220. }
  1221. class Reduce::OutTensorShapeExtender {
  1222. public:
  1223. OutTensorShapeExtender(const TensorShape& ishp, const TensorShape& oshp)
  1224. : m_oshp(oshp) {
  1225. mgb_assert(
  1226. oshp.ndim <= ishp.ndim,
  1227. "output ndim should be less and equal than input ndim for "
  1228. "reduction: "
  1229. "ishp=%s oshp=%s",
  1230. ishp.to_string().c_str(), oshp.to_string().c_str());
  1231. // Ex. ishp = (a, b, c, d), oshp = (c, d)
  1232. if (!oshp.is_scalar() && ishp.ndim != oshp.ndim) {
  1233. size_t ndim_diff = ishp.ndim - oshp.ndim;
  1234. auto&& canonized_oshp = m_canonized_oshp_storage.emplace(oshp);
  1235. for (size_t i = 0; i < ishp.ndim; ++i)
  1236. if (i < ndim_diff)
  1237. canonized_oshp[i] = 1;
  1238. else
  1239. canonized_oshp[i] = oshp[i - ndim_diff];
  1240. canonized_oshp.ndim = ishp.ndim;
  1241. }
  1242. }
  1243. const TensorShape& get() const {
  1244. return m_canonized_oshp_storage.valid() ? m_canonized_oshp_storage.val()
  1245. : m_oshp;
  1246. }
  1247. private:
  1248. Maybe<TensorShape> m_canonized_oshp_storage;
  1249. const TensorShape& m_oshp;
  1250. };
  1251. MGB_DYN_TYPE_OBJ_FINAL_IMPL(Reduce);
  1252. Reduce::Reduce(
  1253. VarNode* inp, VarNode* target_shape, const Param& param,
  1254. const OperatorNodeConfig& config)
  1255. : Super{inp->owner_graph(),
  1256. config,
  1257. ssprintf("reduce%d", static_cast<int>(param.mode)),
  1258. {inp}},
  1259. m_param{param},
  1260. m_kern_scheduler{std::make_unique<KernScheduler>()} {
  1261. add_input({inp});
  1262. if (inp->dtype().enumv() == DTypeEnum::Quantized8Asymm &&
  1263. inp->dtype().category() == DTypeCategory::QUANTIZED) {
  1264. mgb_assert(
  1265. param.mode != Param::Mode::PRODUCT,
  1266. "Reduce does not support PRODUCT mode on quantized input");
  1267. mgb_assert(
  1268. param.mode != Param::Mode::SUM_SQR,
  1269. "Reduce does not support SUM_SQR mode on quantized input");
  1270. mgb_assert(
  1271. param.mode != Param::Mode::SUM,
  1272. "Reduce does not support SUM mode on quantized input");
  1273. }
  1274. DType out_dtype;
  1275. switch (param.data_type) {
  1276. case Param::DataType::DEFAULT:
  1277. out_dtype = inp->dtype();
  1278. break;
  1279. #if !MEGDNN_DISABLE_FLOAT16
  1280. case Param::DataType::FLOAT_O16xC32:
  1281. out_dtype = dtype::Float16();
  1282. break;
  1283. case Param::DataType::FLOAT_IO16xC32:
  1284. mgb_assert(false);
  1285. #endif
  1286. case Param::DataType::FLOAT_O32xC32:
  1287. out_dtype = dtype::Float32();
  1288. break;
  1289. case Param::DataType::QUINT_I8xO32:
  1290. out_dtype = dtype::QuantizedS32(
  1291. inp->dtype().param<dtype::Quantized8Asymm>().scale);
  1292. break;
  1293. case Param::DataType::QINT_I8xO32:
  1294. out_dtype =
  1295. dtype::QuantizedS32(inp->dtype().param<dtype::QuantizedS8>().scale);
  1296. break;
  1297. default:
  1298. mgb_throw(GraphError, "invalid param data_type: %d", int(param.data_type));
  1299. }
  1300. add_output(None)->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE).dtype(out_dtype);
  1301. cg::add_workspace_output(this);
  1302. add_equivalence_component<PODHash<Param>>(&m_param);
  1303. if (param.axis >= -MEGDNN_MAX_NDIM && param.axis < MEGDNN_MAX_NDIM) {
  1304. mgb_throw_if(
  1305. target_shape, GraphError,
  1306. "could not specify both axis and target shape");
  1307. m_is_symtshp = false;
  1308. } else {
  1309. mgb_throw_if(
  1310. !target_shape, GraphError, "neither axis or target_shape specified");
  1311. add_input({target_shape});
  1312. m_is_symtshp = true;
  1313. outshape_by_symvar_enable(0, 1);
  1314. }
  1315. }
  1316. Reduce::~Reduce() = default;
  1317. SymbolVar Reduce::make(
  1318. SymbolVar src, Param param, SymbolVar target_shape,
  1319. const OperatorNodeConfig& config) {
  1320. if (param.data_type == Param::DataType::FLOAT_IO16xC32) {
  1321. mgb_log_warn(
  1322. "DataType FLOAT_IO16xC32 has been deprecated "
  1323. "use FLOAT_O16xC32 instead");
  1324. param.data_type = Param::DataType::FLOAT_O16xC32;
  1325. }
  1326. if (param.mode == Mode::SUM && src.node()->owner_opr()->same_type<Elemwise>()) {
  1327. // replace sum(x^2) by sum_sqr(x)
  1328. auto&& opr = src.node()->owner_opr()->cast_final<Elemwise>();
  1329. if (opr.param().mode == Elemwise::Mode::POW) {
  1330. mgb_assert(opr.input().size() == 2);
  1331. auto pow = SymbolVar{opr.input(1)}.as_immutable_scalar();
  1332. if (pow.valid() && pow->get_cast<float>() == 2) {
  1333. src = opr.input(0);
  1334. param.mode = Mode::SUM_SQR;
  1335. }
  1336. }
  1337. }
  1338. return src.insert_single_output_opr<Reduce>(
  1339. src.node(), target_shape.node(), param, config);
  1340. }
  1341. void Reduce::outshape_by_symvar_do_get_output_shape(
  1342. TensorShape& dest, const ShapeInferInfo& shpinfo) {
  1343. cg::copy_tensor_value_to_shape(dest, *shpinfo.shpval_inp_val.at(0));
  1344. }
  1345. void Reduce::init_output_static_infer_desc() {
  1346. using namespace cg::static_infer;
  1347. auto&& mgr = owner_graph()->static_infer_manager();
  1348. // infer output shape
  1349. if (m_is_symtshp) {
  1350. // reduce to target shape
  1351. Super::init_output_static_infer_desc();
  1352. } else {
  1353. // reduce along axis
  1354. auto infer_shape = [this](TensorShape& dest, const InpVal& inp) {
  1355. dest = inp.val.at(0).shape();
  1356. mgb_assert(
  1357. m_param.axis < static_cast<int>(dest.ndim) &&
  1358. m_param.axis >= -static_cast<int>(dest.ndim),
  1359. "invalid axis for reduction: shape=%s axis=%d",
  1360. dest.to_string().c_str(), m_param.axis);
  1361. int real_axis = m_param.axis;
  1362. if (real_axis < 0)
  1363. real_axis += dest.ndim;
  1364. dest.shape[real_axis] = 1;
  1365. return true;
  1366. };
  1367. mgr.register_shape_infer(
  1368. output(0),
  1369. {SourceType::DEP, {{input(0), DepType::SHAPE}}, infer_shape});
  1370. }
  1371. // infer workspace
  1372. auto infer_workspace = [this](TensorShape& dest, const InpVal& inp) {
  1373. init_kern_sched_shape(inp.val[0].shape(), inp.val[1].shape());
  1374. dest.ndim = 1;
  1375. dest.shape[0] = m_kern_scheduler->workspace_size();
  1376. return true;
  1377. };
  1378. mgr.register_shape_infer(
  1379. output(1), {SourceType::DEP,
  1380. {{input(0), DepType::SHAPE}, {output(0), DepType::SHAPE}},
  1381. infer_workspace});
  1382. // infer value
  1383. static StaticInferOpr<megdnn::Reduce> static_infer_opr;
  1384. auto infer_value = [this](DeviceTensorND& dest, const InpVal& inp) {
  1385. DeviceTensorND workspace;
  1386. auto sopr = static_infer_opr.lock();
  1387. perform(m_param.mode, dest, workspace, inp.val[0].value(), output(0)->dtype(),
  1388. inp.val.at(1).shape(), sopr(), m_param.data_type);
  1389. return true;
  1390. };
  1391. mgr.register_value_infer(
  1392. output(0), {SourceType::DEP,
  1393. {{input(0), DepType::VALUE}, {output(0), DepType::SHAPE}},
  1394. infer_value});
  1395. }
  1396. void Reduce::init_kern_sched_shape(const TensorShape& ishp, const TensorShape& oshp) {
  1397. OutTensorShapeExtender extender(ishp, oshp);
  1398. auto&& canonized_oshp = extender.get();
  1399. m_kern_scheduler->init_shapes(
  1400. static_cast<megdnn::Reduce*>(megdnn_opr()), comp_node(), input(0)->dtype(),
  1401. m_param.mode, ishp, canonized_oshp, m_param.data_type);
  1402. }
  1403. cg::OperatorNodeBase::OprEventCallback Reduce::get_opr_event_callback() {
  1404. auto on_mem_status_changed = [this]() {
  1405. auto&& ishp = input(0)->shape();
  1406. auto&& oshp = output(0)->shape();
  1407. OutTensorShapeExtender extender(ishp, oshp);
  1408. auto&& canonized_oshp = extender.get();
  1409. m_kern_scheduler->check_shapes(input(0)->shape(), canonized_oshp);
  1410. m_kern_scheduler->update_ptr(
  1411. input(0)->dev_tensor(), output(0)->dev_tensor(),
  1412. output(1)->shape()[0] ? output(1)->dev_tensor() : DeviceTensorND{});
  1413. };
  1414. return {on_mem_status_changed};
  1415. }
  1416. void Reduce::mem_plan_fwd_in2out_readonly() {
  1417. init_kern_sched_shape(input(0)->shape(), output(0)->shape());
  1418. if (!m_kern_scheduler->has_actual_computing()) {
  1419. // forward memory if no actual computing needed
  1420. if (!output(0)->mem_plan().valid()) {
  1421. // output(0) is dynamic but current is staic alloc phase (for
  1422. // workspace)
  1423. return;
  1424. }
  1425. auto&& ily = input(0)->layout();
  1426. auto&& oly = output(0)->layout();
  1427. const TensorLayout* fwd_spec = nullptr;
  1428. Maybe<TensorLayout> ily_modified_storage;
  1429. if (!ily.eq_shape(oly)) {
  1430. auto&& ily_modified = ily_modified_storage.emplace(ily);
  1431. mgb_assert(ily.ndim > oly.ndim);
  1432. for (size_t i = 0; i < ily.ndim - oly.ndim; ++i)
  1433. mgb_assert(ily.shape[i] == 1);
  1434. ily_modified = ily_modified.reshape(oly);
  1435. fwd_spec = &ily_modified;
  1436. } else {
  1437. fwd_spec = &ily;
  1438. }
  1439. m_mem_fwd_success = output(0)->set_fwd_in2out_readonly(
  1440. input(0), SubTensorSpec::make_from_layout(*fwd_spec));
  1441. }
  1442. }
  1443. void Reduce::add_input_layout_constraint() {
  1444. if (!cg::is_static_var_shape(output(0))) {
  1445. // output shape can not be inferred; require contiguous to be safe
  1446. input(0)->add_layout_constraint_contiguous();
  1447. } else {
  1448. auto check = [this](const TensorLayout& ily) {
  1449. auto&& mgr = owner_graph()->static_infer_manager();
  1450. auto oshp = mgr.infer_shape(output(0));
  1451. init_kern_sched_shape(ily, oshp);
  1452. if (m_kern_scheduler->has_actual_computing())
  1453. return ily.is_contiguous();
  1454. return true;
  1455. };
  1456. input(0)->add_layout_constraint(check);
  1457. }
  1458. }
  1459. void Reduce::scn_do_execute() {
  1460. auto&& inp = input(0)->dev_tensor();
  1461. auto&& out = output(0)->dev_tensor();
  1462. auto&& ishp = input(0)->shape();
  1463. auto&& oshp = output(0)->shape();
  1464. const DeviceTensorND* out_ptr;
  1465. Maybe<DeviceTensorND> canonized_storage;
  1466. OutTensorShapeExtender extender(ishp, oshp);
  1467. auto&& canonized_oshp = extender.get();
  1468. if (canonized_oshp.ndim != out.shape().ndim) {
  1469. auto&& canonized_out = canonized_storage.emplace(out);
  1470. canonized_out.reset(
  1471. canonized_out.storage(),
  1472. canonized_out.layout().reshape(canonized_oshp));
  1473. out_ptr = &canonized_out;
  1474. } else {
  1475. out_ptr = &out;
  1476. }
  1477. // shape initialized either in deducing workspace,
  1478. // mem_plan_fwd_in2out_readonly, or check input layout
  1479. m_kern_scheduler->check_shapes(inp.shape(), out_ptr->shape());
  1480. if (m_kern_scheduler->has_actual_computing()) {
  1481. m_kern_scheduler->update_ptr(
  1482. inp, *out_ptr,
  1483. output(1)->shape()[0] ? output(1)->dev_tensor() : DeviceTensorND{});
  1484. m_kern_scheduler->execute(
  1485. static_cast<megdnn::Reduce*>(megdnn_opr()), inp, *out_ptr);
  1486. } else {
  1487. // no reduction needed, just forward
  1488. if (m_mem_fwd_success) {
  1489. mgb_assert(
  1490. inp.raw_ptr() == out_ptr->raw_ptr() &&
  1491. out_ptr->layout().total_nr_elems() ==
  1492. inp.layout().total_nr_elems());
  1493. } else {
  1494. if (!out_ptr->shape().eq_shape(inp.shape())) {
  1495. mgb_assert(
  1496. out_ptr->shape().is_scalar() &&
  1497. inp.shape().total_nr_elems() == 1);
  1498. out_ptr->sub(SubTensorSpec::make_from_layout(inp.layout()))
  1499. .copy_from_fixlayout(inp);
  1500. } else {
  1501. out_ptr->copy_from_fixlayout(inp);
  1502. }
  1503. }
  1504. }
  1505. }
  1506. void Reduce::perform(
  1507. Mode mode, DeviceTensorND& dest, DeviceTensorND& workspace,
  1508. const DeviceTensorND& input, const DType& target_dtype,
  1509. const TensorShape& target_shape, intl::UniqPtrWithCN<megdnn::Reduce>& opr,
  1510. const Param::DataType data_type) {
  1511. mgb_assert(
  1512. !dest.storage().comp_node_valid() || opr.comp_node() == dest.comp_node());
  1513. KernScheduler ksched;
  1514. OutTensorShapeExtender extender(input.shape(), target_shape);
  1515. auto&& canonized_oshp = extender.get();
  1516. ksched.init_shapes(
  1517. opr.get(), opr.comp_node(), input.layout().dtype, mode, input.shape(),
  1518. canonized_oshp, data_type);
  1519. if (!ksched.has_actual_computing()) {
  1520. mgb_assert(target_shape.total_nr_elems() == input.layout().total_nr_elems());
  1521. dest.copy_from(input);
  1522. dest.reset(dest.storage(), {target_shape, dest.dtype()});
  1523. return;
  1524. }
  1525. workspace.comp_node(opr.comp_node()).dtype(dtype::Byte());
  1526. size_t workspace_size = ksched.workspace_size();
  1527. DeviceTensorND input_contig_storage;
  1528. const DeviceTensorND* input_contig = &input;
  1529. if (!input.layout().is_contiguous()) {
  1530. auto offset = get_aligned_power2(
  1531. workspace_size, opr.comp_node().get_mem_addr_alignment());
  1532. workspace_size = offset + input.dtype().size(input.shape().total_nr_elems());
  1533. workspace.resize({workspace_size});
  1534. input_contig_storage
  1535. .reset(workspace.storage().sub(offset), {input.shape(), input.dtype()})
  1536. .copy_from(input);
  1537. input_contig = &input_contig_storage;
  1538. } else {
  1539. workspace.resize({workspace_size});
  1540. }
  1541. opr.comp_node().activate();
  1542. dest.comp_node(opr.comp_node()).dtype(target_dtype).resize(target_shape);
  1543. ksched.update_ptr(*input_contig, dest, workspace);
  1544. ksched.execute(opr.get(), *input_contig, dest);
  1545. }
  1546. Reduce::NodeProp* Reduce::do_make_node_prop() const {
  1547. auto ret = Super::do_make_node_prop();
  1548. ret->add_dep_type_existing_var(input(0), NodeProp::DepType::VALUE_ALLOW_EMPTY);
  1549. return ret;
  1550. }
  1551. void Reduce::create_megdnn_opr() {
  1552. set_megdnn_opr(
  1553. intl::get_megdnn_handle(comp_node())->create_operator<megdnn::Reduce>());
  1554. }
  1555. #if MGB_ENABLE_GRAD
  1556. MGB_IMPL_OPR_GRAD(Reduce) {
  1557. for (size_t i = 1; i < opr.output().size(); ++i)
  1558. mgb_assert(!out_grad[i]);
  1559. if (wrt_idx || opr.input(0)->dtype().category() != DTypeCategory::FLOAT)
  1560. return InvalidGrad::make(opr, wrt_idx);
  1561. SymbolVar og{out_grad[0]}, iv{opr.input(0)}, ov{opr.output(0)};
  1562. constexpr auto cmv = Elemwise::Mode::COND_LEQ_MOV;
  1563. using Mode = Reduce::Mode;
  1564. SymbolVar grad = [&]() {
  1565. switch (opr.param().mode) {
  1566. case Mode::SUM:
  1567. return Broadcast::make(og, GetVarShape::make(iv));
  1568. case Mode::SUM_SQR:
  1569. return (og * og.make_scalar_dt(2) * iv);
  1570. case Mode::PRODUCT:
  1571. return ((og * ov) / iv);
  1572. case Mode::MIN:
  1573. return Elemwise::make({iv, ov, og}, cmv);
  1574. case Mode::MAX:
  1575. return Elemwise::make({ov, iv, og}, cmv);
  1576. case Mode::MEAN: {
  1577. auto og_shape = opr::GetVarShape::make(og),
  1578. iv_shape = opr::GetVarShape::make(iv),
  1579. scale =
  1580. div(opr::reduce_prod(og_shape, og_shape.make_scalar(1)),
  1581. opr::reduce_prod(iv_shape, iv_shape.make_scalar(1)));
  1582. return scale * Broadcast::make(og, GetVarShape::make(iv));
  1583. }
  1584. default:
  1585. mgb_throw(MegBrainError, "bad reduce mode");
  1586. }
  1587. }();
  1588. grad = TypeCvt::make(grad, iv.dtype());
  1589. return grad.node();
  1590. }
  1591. #endif
  1592. void Reduce::record_execute_deps(ExecDependencyArray& deps) {
  1593. record_megdnn_opr(deps);
  1594. m_kern_scheduler->record_execute_deps(deps);
  1595. }
  1596. /* =========================== PowC =========================== */
  1597. MGB_DYN_TYPE_OBJ_FINAL_IMPL(PowC);
  1598. PowC::PowC(VarNode* i0, const Param& param, const OperatorNodeConfig& config)
  1599. : Super(OperatorNodeBaseCtorParam{
  1600. i0->owner_graph(), config, ssprintf("powc_%g", param.exp), {i0}}) {
  1601. init_megdnn_opr(*this, param);
  1602. add_input({i0});
  1603. output(0)->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
  1604. intl::MegDNNOprInitPostCtor<PowC>::apply(*this);
  1605. }
  1606. SymbolVar PowC::make(
  1607. SymbolVar x, const Param& param, const OperatorNodeConfig& config) {
  1608. if (almost_equal(param.exp, 1.f)) {
  1609. return x;
  1610. }
  1611. if (almost_equal(param.exp, 0.f)) {
  1612. return x.make_scalar_dt(1).broadcast(x.symshape());
  1613. }
  1614. return x.insert_single_output_opr<PowC>(x.node(), param, config);
  1615. }
  1616. void PowC::add_input_layout_constraint() {
  1617. input(0)->add_layout_constraint_monotone();
  1618. }
  1619. void PowC::mem_plan_fwd_in2out_writable() {
  1620. output(0)->set_fwd_in2out_writable(input(0));
  1621. }
  1622. void PowC::init_output_static_infer_desc() {
  1623. Super::init_output_static_infer_desc();
  1624. static StaticInferOpr<megdnn::PowC> static_infer_opr;
  1625. using namespace cg::static_infer;
  1626. auto infer_value = [this](DeviceTensorND& dest, const InpVal& inp) {
  1627. auto infer_opr_lock = static_infer_opr.lock();
  1628. auto&& infer_opr = infer_opr_lock();
  1629. infer_opr->param() = this->param();
  1630. auto&& ival = inp.val[0].value().as_megdnn();
  1631. infer_opr->exec(ival, dest.resize(ival.layout).as_megdnn());
  1632. return true;
  1633. };
  1634. owner_graph()->static_infer_manager().register_value_infer(
  1635. output(0), {SourceType::DEP, {{input(0), DepType::VALUE}}, infer_value});
  1636. }
  1637. void PowC::scn_do_execute() {
  1638. if (input(0)->dev_tensor().empty()) {
  1639. mgb_assert(output(0)->dev_tensor().empty());
  1640. return;
  1641. }
  1642. mgb_assert(!output(0)->dev_tensor().empty());
  1643. Super::scn_do_execute();
  1644. }
  1645. PowC::NodeProp* PowC::do_make_node_prop() const {
  1646. auto ret = Super::do_make_node_prop();
  1647. ret->add_dep_type_existing_var(input(0), NodeProp::DepType::VALUE_ALLOW_EMPTY);
  1648. return ret;
  1649. }
  1650. #if MGB_ENABLE_GRAD
  1651. MGB_IMPL_OPR_GRAD(PowC) {
  1652. auto exp = opr.param().exp;
  1653. return (exp * SymbolVar{out_grad[0]} *
  1654. PowC::make(opr.input(0), exp - 1, opr.config()))
  1655. .node();
  1656. }
  1657. #endif
  1658. // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}