GitOrigin-RevId: ddc8af79af
tags/v1.0.0-rc1
| @@ -43,6 +43,7 @@ add_library(megbrain OBJECT EXCLUDE_FROM_ALL ${SOURCES}) | |||
| target_link_libraries(megbrain PUBLIC mgb_opr_param_defs) | |||
| target_include_directories(megbrain | |||
| PUBLIC $<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}> | |||
| PRIVATE ${PROJECT_SOURCE_DIR}/third_party/midout/src | |||
| ) | |||
| foreach (INCPATH IN LISTS MGB_INC) | |||
| target_include_directories(megbrain | |||
| @@ -15,6 +15,20 @@ | |||
| #include <deque> | |||
| //! TODO: here has to be know some megdnn::opr when there is produced midout.h | |||
| //! fix it if there is another graceful way. | |||
| #include "megdnn/oprs.h" | |||
| #include "megbrain/utils/hash_ct.h" | |||
| #include "midout.h" | |||
| MIDOUT_DECL(megbrain_chain) | |||
| #define MIDOUT_B(tag) \ | |||
| MIDOUT_BEGIN(megbrain_chain, midout_iv(MGB_HASH_STR(tag))) { | |||
| #define MIDOUT_E \ | |||
| } \ | |||
| MIDOUT_END(); | |||
| using namespace mgb; | |||
| using namespace gopt; | |||
| using namespace opr; | |||
| @@ -132,6 +146,7 @@ const char* ExpandFusedArithPass::name() const { | |||
| } | |||
| void ExpandFusedArithPass::apply(OptState &opt) const { | |||
| MIDOUT_B("ExpandFusedArithPass::apply") | |||
| auto rewriter = opt.graph().make_rewriter(); | |||
| auto on_opr = [&](OperatorNodeBase *opr) { | |||
| using Mode = Elemwise::Mode; | |||
| @@ -172,6 +187,7 @@ void ExpandFusedArithPass::apply(OptState &opt) const { | |||
| opt.graph().iter(on_opr); | |||
| rewriter.apply_inplace(); | |||
| MIDOUT_E | |||
| } | |||
| /* ================ NormalizeArithChainPass ================ */ | |||
| @@ -529,7 +545,9 @@ const char* NormalizeArithChainPass::name() const { | |||
| } | |||
| void NormalizeArithChainPass::apply(OptState &opt) const { | |||
| MIDOUT_B("NormalizeArithChainPass::apply") | |||
| Impl{opt}; | |||
| MIDOUT_E | |||
| } | |||
| /* ================ ReorderArithChainPass ================ */ | |||
| @@ -737,7 +755,9 @@ const char* ReorderArithChainPass::name() const { | |||
| } | |||
| void ReorderArithChainPass::apply(OptState &opt) const { | |||
| MIDOUT_B("ReorderArithChainPass::apply") | |||
| Impl{*this, opt}; | |||
| MIDOUT_E | |||
| } | |||
| /* ================ ArithFusePass ================ */ | |||
| @@ -944,8 +964,9 @@ const char* ArithFusePass::name() const { | |||
| } | |||
| void ArithFusePass::apply(OptState &opt) const { | |||
| MIDOUT_B("ArithFusePass::apply") | |||
| Impl{opt}; | |||
| MIDOUT_E | |||
| } | |||
| // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} | |||
| @@ -19,6 +19,16 @@ | |||
| #include <cmath> | |||
| #include "megbrain/utils/hash_ct.h" | |||
| #include "midout.h" | |||
| MIDOUT_DECL(megbrain_inplace) | |||
| #define MIDOUT_B(tag) \ | |||
| MIDOUT_BEGIN(megbrain_inplace, midout_iv(MGB_HASH_STR(tag))) { | |||
| #define MIDOUT_E \ | |||
| } \ | |||
| MIDOUT_END(); | |||
| using namespace mgb; | |||
| using namespace opr; | |||
| using namespace gopt; | |||
| @@ -150,8 +160,10 @@ bool gopt::has_inplace_basic_arith_opt(const cg::OperatorNodeBase& opr) { | |||
| const inplace_optimize::OptimizerRegistry& | |||
| inplace_optimize::optimizer_registry() { | |||
| MIDOUT_B("inplace_optimize::optimizer_registry") | |||
| static OptimizerRegistry ret = make_optimizer_registry(); | |||
| return ret; | |||
| MIDOUT_E | |||
| } | |||
| inplace_optimize::OptimizerRegistry | |||
| @@ -13,6 +13,20 @@ | |||
| #include "megbrain/gopt/basic_arith.h" | |||
| #include "megbrain/serialization/serializer.h" | |||
| //! TODO: here has to be know some megdnn::opr when there is produced midout.h | |||
| //! fix it if there is another graceful way. | |||
| #include "megdnn/oprs.h" | |||
| #include "megbrain/utils/hash_ct.h" | |||
| #include "midout.h" | |||
| MIDOUT_DECL(megbrain_trans) | |||
| #define MIDOUT_B(tag) \ | |||
| MIDOUT_BEGIN(megbrain_trans, midout_iv(MGB_HASH_STR(tag))) { | |||
| #define MIDOUT_E \ | |||
| } \ | |||
| MIDOUT_END(); | |||
| using namespace mgb; | |||
| using namespace gopt; | |||
| @@ -284,7 +298,9 @@ const char* ArithMulDistributePass::name() const { | |||
| } | |||
| void ArithMulDistributePass::apply(OptState &opt) const { | |||
| MIDOUT_B("ArithMulDistributePass::apply") | |||
| Impl{*this, opt}; | |||
| MIDOUT_E | |||
| } | |||
| /* ================ FinalArithTransformPass ================ */ | |||
| @@ -488,7 +504,9 @@ const char* FinalArithTransformPass::name() const { | |||
| } | |||
| void FinalArithTransformPass::apply(OptState &opt) const { | |||
| MIDOUT_B("FinalArithTransformPass::apply") | |||
| Impl{*this, opt}; | |||
| MIDOUT_E | |||
| } | |||
| // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} | |||
| @@ -27,6 +27,7 @@ | |||
| #include "megbrain/opr/imgproc.h" | |||
| #include "megbrain/opr/nn_int.h" | |||
| #include "megbrain/opr/tensor_gen.h" | |||
| #include "megbrain/utils/hash_ct.h" | |||
| #include "megdnn/tensor_format.h" | |||
| @@ -36,6 +37,16 @@ | |||
| #include "megbrain/gopt/misc.h" | |||
| #include "megbrain/utils/hash_ct.h" | |||
| #include "midout.h" | |||
| MIDOUT_DECL(megbrain_inference) | |||
| #define MIDOUT_B(tag) \ | |||
| MIDOUT_BEGIN(megbrain_inference, midout_iv(MGB_HASH_STR(tag))) { | |||
| #define MIDOUT_E \ | |||
| } \ | |||
| MIDOUT_END(); | |||
| using namespace mgb; | |||
| using namespace gopt; | |||
| @@ -430,7 +441,9 @@ ParamRedistributePass::Impl::Impl(OptState &state): | |||
| } | |||
| void ParamRedistributePass::apply(OptState &state) const { | |||
| MIDOUT_B("ParamRedistributePass::apply") | |||
| Impl{state}; | |||
| MIDOUT_E | |||
| } | |||
| /* ================ ParamFusePass ================ */ | |||
| @@ -512,6 +525,7 @@ const char* ParamFusePass::name() const { | |||
| } | |||
| void ParamFusePass::apply(OptState &state) const { | |||
| MIDOUT_B("ParamFusePass::apply") | |||
| auto rewriter = state.graph().make_rewriter(); | |||
| auto cg = state.graph().comp_graph(); | |||
| @@ -613,6 +627,7 @@ void ParamFusePass::apply(OptState &state) const { | |||
| state.graph().iter(replace_opr); | |||
| rewriter.apply_inplace(); | |||
| MIDOUT_E | |||
| } | |||
| /* ================ One2OneOprReplacePass ================ */ | |||
| @@ -621,6 +636,7 @@ const char* ConvertF32ToF16Pass::name() const { | |||
| } | |||
| void ConvertF32ToF16Pass::apply(OptState& state) const { | |||
| MIDOUT_B("ConvertF32ToF16Pass::apply") | |||
| state.set_var_replace_check_flag(m_var_replace_check_flag); | |||
| auto rewriter = state.graph().make_rewriter(); | |||
| VarNodeArray new_inp_cache; | |||
| @@ -674,6 +690,7 @@ void ConvertF32ToF16Pass::apply(OptState& state) const { | |||
| auto opr = endpoints[0].node()->owner_opr(); | |||
| state.call_with_opr(opr, replace_output, OprPropertyFlag::NONE); | |||
| rewriter.apply_inplace(); | |||
| MIDOUT_E | |||
| } | |||
| std::unique_ptr<ConvertF32ToF16Pass> ConvertF32ToF16Pass::make( | |||
| @@ -940,6 +957,7 @@ std::unique_ptr<ConvertF32ToF16Pass> ConvertF32ToF16Pass::make( | |||
| /* ================ ConvertFormatPass ================ */ | |||
| void ConvertFormatPass::apply(OptState& state) const { | |||
| MIDOUT_B("ConvertFormatPass::apply") | |||
| state.set_var_replace_check_flag(m_var_replace_check_flag); | |||
| auto rewriter = state.graph().make_rewriter(); | |||
| VarNodeArray new_inp_cache; | |||
| @@ -994,9 +1012,11 @@ void ConvertFormatPass::apply(OptState& state) const { | |||
| }; | |||
| state.graph().iter(on_opr); | |||
| rewriter.apply_inplace(); | |||
| MIDOUT_E | |||
| } | |||
| std::unique_ptr<ConvertFormatPass> ConvertFormatPass::make_nhwcd4_converter() { | |||
| MIDOUT_B("ConvertFormatPass::make") | |||
| auto filter_mode = | |||
| [](const megdnn::param::Convolution::Sparse conv_mode, | |||
| const VarNode* filter) -> megdnn::param::RelayoutFormat::Mode { | |||
| @@ -1551,6 +1571,7 @@ std::unique_ptr<ConvertFormatPass> ConvertFormatPass::make_nhwcd4_converter() { | |||
| replace_func[opr::GroupLocalForward::typeinfo()] = | |||
| relayout_first_inp_to_chw; | |||
| return ret; | |||
| MIDOUT_E | |||
| } | |||
| /* ================ ConvertBatchNormPass ================ */ | |||
| @@ -1559,6 +1580,7 @@ const char* ConvertBatchNormToElemwisePass::name() const { | |||
| } | |||
| void ConvertBatchNormToElemwisePass::apply(OptState& state) const { | |||
| MIDOUT_B("ConvertBatchNormToElemwisePass::apply") | |||
| auto rewriter = state.graph().make_rewriter(); | |||
| auto on_opr = [&](OperatorNodeBase* opr) { | |||
| if (auto bn = try_cast_as_op<opr::BatchNorm>(opr)) { | |||
| @@ -1586,6 +1608,7 @@ void ConvertBatchNormToElemwisePass::apply(OptState& state) const { | |||
| state.graph().iter(on_opr); | |||
| rewriter.apply_inplace(); | |||
| MIDOUT_E | |||
| } | |||
| /* ================ FuseConvBiasNonlinPass ================ */ | |||
| @@ -1594,6 +1617,7 @@ const char* FuseConvBiasNonlinPass::name() const { | |||
| } | |||
| void FuseConvBiasNonlinPass::apply(OptState& state) const { | |||
| MIDOUT_B("FuseConvBiasNonlinPass::apply") | |||
| std::unordered_map<VarNode*, std::vector<OperatorNodeBase*>> m_deps; | |||
| state.graph().iter([&m_deps](OperatorNodeBase* opr) { | |||
| for (auto& inp : opr->input()) { | |||
| @@ -1843,6 +1867,7 @@ void FuseConvBiasNonlinPass::apply(OptState& state) const { | |||
| state.graph().iter(on_opr); | |||
| rewriter.apply_inplace(); | |||
| MIDOUT_E | |||
| } | |||
| /* ================ FuseConvBiasZPass ================ */ | |||
| @@ -1851,6 +1876,7 @@ const char* FuseConvBiasZPass::name() const { | |||
| } | |||
| void FuseConvBiasZPass::apply(OptState& state) const { | |||
| MIDOUT_B("FuseConvBiasZPass::apply") | |||
| UniqReaderCheck uniq_reader_check{state.graph()}; | |||
| auto rewriter = state.graph().make_rewriter(); | |||
| @@ -1977,6 +2003,7 @@ void FuseConvBiasZPass::apply(OptState& state) const { | |||
| state.graph().iter(on_opr); | |||
| rewriter.apply_inplace(); | |||
| MIDOUT_E | |||
| } | |||
| /* ================ FuseDeconvCvtPass ================ */ | |||
| @@ -1986,6 +2013,7 @@ const char* FuseDeconvCvtPass::name() const { | |||
| void FuseDeconvCvtPass::apply(OptState& state) const { | |||
| MIDOUT_B("FuseDeconvCvtPass::apply") | |||
| std::unordered_map<VarNode*, std::vector<OperatorNodeBase*>> m_deps; | |||
| state.graph().iter([&m_deps](OperatorNodeBase* opr) { | |||
| for (auto& inp : opr->input()) { | |||
| @@ -2036,6 +2064,7 @@ void FuseDeconvCvtPass::apply(OptState& state) const { | |||
| state.graph().iter(on_opr); | |||
| rewriter.apply_inplace(); | |||
| MIDOUT_E | |||
| } | |||
| /* ================ ParamMergePass ================ */ | |||
| @@ -2044,10 +2073,12 @@ const char* ParamMergePass::name() const { | |||
| } | |||
| void ParamMergePass::apply(OptState& opt_state) const { | |||
| MIDOUT_B("ParamMergePass::apply") | |||
| param_merge<opr::SharedDeviceTensor, opr::MultipleDeviceTensorHolder>( | |||
| opt_state); | |||
| param_merge<opr::SharedDeviceTensorWithFormat, | |||
| opr::MultipleDeviceTensorWithFormatHolder>(opt_state); | |||
| MIDOUT_E | |||
| } | |||
| // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} | |||
| @@ -19,6 +19,16 @@ | |||
| #include "megbrain/serialization/opr_shallow_copy.h" | |||
| #include "../../core/impl/graph/cg_impl.h" | |||
| #include "megbrain/utils/hash_ct.h" | |||
| #include "midout.h" | |||
| MIDOUT_DECL(megbrain_misc) | |||
| #define MIDOUT_B(tag) \ | |||
| MIDOUT_BEGIN(megbrain_misc, midout_iv(MGB_HASH_STR(tag))) { | |||
| #define MIDOUT_E \ | |||
| } \ | |||
| MIDOUT_END(); | |||
| using namespace mgb; | |||
| using namespace gopt; | |||
| @@ -29,6 +39,7 @@ const char* RemoveNonComputingOprPass::name() const { | |||
| } | |||
| void RemoveNonComputingOprPass::apply(OptState& opt) const { | |||
| MIDOUT_B("RemoveNonComputingOprPass::apply") | |||
| auto rewriter = opt.graph().make_rewriter(); | |||
| auto on_opr = [&](OperatorNodeBase* opr) { | |||
| auto type = opr->dyn_typeinfo(); | |||
| @@ -75,6 +86,7 @@ void RemoveNonComputingOprPass::apply(OptState& opt) const { | |||
| opt.graph().iter(on_opr); | |||
| rewriter.apply_inplace(); | |||
| MIDOUT_E | |||
| } | |||
| /* ================ ExpandVirtualGradPass ================ */ | |||
| @@ -84,6 +96,7 @@ const char* ExpandVirtualGradPass::name() const { | |||
| } | |||
| void ExpandVirtualGradPass::apply(OptState& opt) const { | |||
| MIDOUT_B("ExpandVirtualGradPass::apply") | |||
| #if MGB_ENABLE_GRAD | |||
| opt.set_var_replace_check_flag(VarReplaceCheckFlag::NOCHECK); | |||
| auto rewriter = opt.graph().make_rewriter(); | |||
| @@ -111,6 +124,7 @@ void ExpandVirtualGradPass::apply(OptState& opt) const { | |||
| #else | |||
| MGB_MARK_USED_VAR(opt); | |||
| #endif | |||
| MIDOUT_E | |||
| } | |||
| /* ================= DelayBroadcastPass ================ */ | |||
| @@ -144,6 +158,7 @@ void DelayBroadcastPass::apply(OptState& opt) const { | |||
| // remove them from the chain, and add them back right after the endpoint. | |||
| // TypeCvt's order may change, so disable the check. | |||
| MIDOUT_B("DelayBroadcastPass::apply") | |||
| opt.set_var_replace_check_flag(VarReplaceCheckFlag::NOCHECK); | |||
| auto unique_reader_chk = UniqReaderCheck{opt.graph()}; | |||
| @@ -325,6 +340,7 @@ void DelayBroadcastPass::apply(OptState& opt) const { | |||
| opt.graph().iter(on_opr); | |||
| rewriter.apply_inplace(); | |||
| MIDOUT_E | |||
| } | |||
| /* ======================= RecompTypeCvtPass ====================== */ | |||
| @@ -334,6 +350,7 @@ const char* RecompTypeCvtPass::name() const { | |||
| } | |||
| void RecompTypeCvtPass::apply(OptState& opt) const { | |||
| MIDOUT_B("RecompTypeCvtPass::apply") | |||
| auto rewriter = opt.graph().make_rewriter(); | |||
| auto allowed_typecvt = [](OperatorNodeBase* opr) -> OperatorNodeBase* { | |||
| @@ -399,6 +416,7 @@ void RecompTypeCvtPass::apply(OptState& opt) const { | |||
| }; | |||
| opt.graph().iter(on_opr); | |||
| rewriter.apply_inplace(); | |||
| MIDOUT_E | |||
| } | |||
| /* ======================= CombineAstypeAndReducePass ====================== */ | |||
| @@ -408,6 +426,7 @@ const char* CombineAstypeAndReducePass::name() const { | |||
| } | |||
| void CombineAstypeAndReducePass::apply(OptState& opt) const { | |||
| MIDOUT_B("CombineAstypeAndReducePass::apply") | |||
| auto rewriter = opt.graph().make_rewriter(); | |||
| using DataType = opr::Reduce::Param::DataType; | |||
| @@ -453,6 +472,7 @@ void CombineAstypeAndReducePass::apply(OptState& opt) const { | |||
| opt.graph().iter(on_opr); | |||
| rewriter.apply_inplace(); | |||
| MIDOUT_E | |||
| } | |||
| /* ================ CondExecConstPredicateFolding ================ */ | |||
| @@ -462,6 +482,7 @@ const char* CondExecConstPredicateFolding::name() const { | |||
| void CondExecConstPredicateFolding::apply(OptState& opt) const { | |||
| #if MGB_ENABLE_COND_EXEC | |||
| MIDOUT_B("CondExecConstPredicateFolding::apply") | |||
| if (!cg::ExecutionMask::have_alive_instance()) { | |||
| return; | |||
| } | |||
| @@ -605,6 +626,7 @@ void CondExecConstPredicateFolding::apply(OptState& opt) const { | |||
| } | |||
| rewriter.apply_inplace(); | |||
| MIDOUT_E | |||
| #endif // MGB_ENABLE_COND_EXEC | |||
| } | |||
| @@ -632,6 +654,7 @@ bool RemoveRedundantTypeCvtPass::should_remove(DType A, DType B) { | |||
| } | |||
| void RemoveRedundantTypeCvtPass::apply(OptState& opt) const { | |||
| MIDOUT_B("RemoveRedundantTypeCvtPass::apply") | |||
| auto rewriter = opt.graph().make_rewriter(); | |||
| auto on_opr = [&](OperatorNodeBase* opr) { | |||
| @@ -656,6 +679,7 @@ void RemoveRedundantTypeCvtPass::apply(OptState& opt) const { | |||
| opt.graph().iter(on_opr); | |||
| rewriter.apply_inplace(); | |||
| MIDOUT_E | |||
| } | |||
| #if MGB_ENABLE_OPR_MM | |||
| @@ -668,6 +692,7 @@ const char* PackAllReduceScanPass::name() const { | |||
| } | |||
| void PackAllReduceScanPass::apply(OptState& opt) const { | |||
| MIDOUT_B("PackAllReduceScanPass::apply") | |||
| auto comp_graph = opt.graph().comp_graph(); | |||
| if (comp_graph->options().allreduce_pack_max_size == 0) return; | |||
| auto cb_scan = [this] (OperatorNodeBase* opr) { | |||
| @@ -682,6 +707,7 @@ void PackAllReduceScanPass::apply(OptState& opt) const { | |||
| } | |||
| }; | |||
| opt.graph().iter(cb_scan); | |||
| MIDOUT_E | |||
| } | |||
| bool PackAllReduceScanPass::check_pattern(OperatorNodeBase* opr) { | |||
| @@ -856,6 +882,7 @@ void PackAllReduceReplacePass::insert_packed_oprs( | |||
| } | |||
| void PackAllReduceReplacePass::apply(OptState& opt) const { | |||
| MIDOUT_B("PackAllReduceReplacePass::apply") | |||
| // get graph options | |||
| auto comp_graph = opt.graph().comp_graph(); | |||
| size_t max_size = comp_graph->options().allreduce_pack_max_size * 1024 * 1024; | |||
| @@ -917,6 +944,7 @@ void PackAllReduceReplacePass::apply(OptState& opt) const { | |||
| }; | |||
| opt.graph().iter(cb_replace); | |||
| rewriter.apply_inplace(); | |||
| MIDOUT_E | |||
| } | |||
| #else | |||
| @@ -36,6 +36,16 @@ | |||
| #endif | |||
| #include "megbrain/gopt/misc.h" | |||
| #include "megbrain/utils/hash_ct.h" | |||
| #include "midout.h" | |||
| MIDOUT_DECL(megbrain_tensor_reformat) | |||
| #define MIDOUT_B(tag) \ | |||
| MIDOUT_BEGIN(megbrain_tensor_reformat, midout_iv(MGB_HASH_STR(tag))) { | |||
| #define MIDOUT_E \ | |||
| } \ | |||
| MIDOUT_END(); | |||
| using namespace mgb; | |||
| using namespace gopt; | |||
| @@ -755,8 +765,10 @@ void TensorReformatPass::translate_pass(OptState& opt) const { | |||
| } | |||
| void TensorReformatPass::apply(OptState& opt) const { | |||
| MIDOUT_B("TensorReformatPass::apply") | |||
| insert_pass(opt); | |||
| translate_pass(opt); | |||
| MIDOUT_E | |||
| } | |||
| /* ================ EnableTensorCorePass =============== */ | |||
| @@ -773,6 +785,7 @@ VarNode* EnableTensorCorePass::on_graph_endpoint_var(VarNode* new_var, | |||
| std::unique_ptr<EnableTensorCorePass> | |||
| EnableTensorCorePass::make_tensorcore_converter() { | |||
| MIDOUT_B("EnableTensorCorePass::make") | |||
| // replace rule for conv bias opr | |||
| auto replace_conv_bias_opr = [](OperatorNodeBase* opr, | |||
| const VarNodeArray& new_inp) { | |||
| @@ -1111,6 +1124,7 @@ EnableTensorCorePass::make_tensorcore_converter() { | |||
| replace_func[opr::GetVarShape::typeinfo()] = replace_inps_to_nchw4; | |||
| replace_func[opr::Dimshuffle::typeinfo()] = replace_inps_to_nchw4; | |||
| return ret; | |||
| MIDOUT_E | |||
| } | |||
| /* ================ EnableCHWN4Pass =============== */ | |||
| @@ -1125,6 +1139,7 @@ VarNode* EnableCHWN4Pass::on_graph_endpoint_var(VarNode* new_var, | |||
| } | |||
| std::unique_ptr<EnableCHWN4Pass> EnableCHWN4Pass::make_chwn4_converter() { | |||
| MIDOUT_B("EnableCHWN4Pass::make") | |||
| auto ret = std::make_unique<EnableCHWN4Pass>(); | |||
| ret->set_var_replace_check_flag(VarReplaceCheckFlag::NOCHECK); | |||
| auto&& replace_func = ret->m_opr_replace_func; | |||
| @@ -1381,6 +1396,7 @@ std::unique_ptr<EnableCHWN4Pass> EnableCHWN4Pass::make_chwn4_converter() { | |||
| replace_func[opr::Dimshuffle::typeinfo()] = replace_inps_to_nchw4; | |||
| replace_func[opr::BatchConvBias::typeinfo()] = replace_inps_to_nchw4; | |||
| return ret; | |||
| MIDOUT_E | |||
| } | |||
| /* ================ EnableNCHW4Pass ================ */ | |||
| @@ -1395,6 +1411,7 @@ VarNode* EnableNCHW4Pass::on_graph_endpoint_var(VarNode* new_var, | |||
| } | |||
| std::unique_ptr<EnableNCHW4Pass> EnableNCHW4Pass::make_nchw4_converter(){ | |||
| MIDOUT_B("EnableNCHW4Pass::make") | |||
| auto ret = std::make_unique<EnableNCHW4Pass>(); | |||
| ret->set_var_replace_check_flag(VarReplaceCheckFlag::NOCHECK); | |||
| using RelayoutMode = RelayoutPlaceholder::LayoutType; | |||
| @@ -1772,6 +1789,7 @@ std::unique_ptr<EnableNCHW4Pass> EnableNCHW4Pass::make_nchw4_converter(){ | |||
| replace_func[opr::IncrSubtensor::typeinfo()] = relayout_inp_to_nchw; | |||
| replace_func[opr::WarpAffineForward::typeinfo()] = relayout_inp_to_nchw; | |||
| return ret; | |||
| MIDOUT_E | |||
| } | |||
| /* ================ EnableNchwxxPass =============== */ | |||
| @@ -2140,6 +2158,7 @@ void EnableNchwxxPass::fill_opr_convert_fun(size_t pack_c_size){ | |||
| std::unique_ptr<EnableNchwxxPass> EnableNchwxxPass::make_nchwxx_converter( | |||
| size_t pack_c_size) { | |||
| MIDOUT_B("EnableNchwxxPass::make") | |||
| auto ret = std::make_unique<EnableNchwxxPass>(pack_c_size); | |||
| ret->set_var_replace_check_flag(VarReplaceCheckFlag::NOCHECK); | |||
| std::string convter_pass_name = "conv_format_nchw88"; | |||
| @@ -2149,6 +2168,7 @@ std::unique_ptr<EnableNchwxxPass> EnableNchwxxPass::make_nchwxx_converter( | |||
| ret->fill_opr_convert_fun(pack_c_size); | |||
| ret->set_name(convter_pass_name); | |||
| return ret; | |||
| MIDOUT_E | |||
| } | |||
| /* ================ EnableNchw44DotPass =============== */ | |||
| @@ -2164,6 +2184,7 @@ VarNode* EnableNchw44DotPass::on_graph_endpoint_var(VarNode* new_var, | |||
| std::unique_ptr<EnableNchw44DotPass> | |||
| EnableNchw44DotPass::make_nchw44_dot_converter() { | |||
| MIDOUT_B("EnableNchw44DotPass::make") | |||
| auto ret = std::make_unique<EnableNchw44DotPass>(); | |||
| ret->set_var_replace_check_flag(VarReplaceCheckFlag::NOCHECK); | |||
| //! First is whether the conv can trans to nchwxx, second is the filter | |||
| @@ -2384,6 +2405,7 @@ EnableNchw44DotPass::make_nchw44_dot_converter() { | |||
| replace_func[opr::Convolution::typeinfo()] = replace_conv_opr; | |||
| replace_func[opr::ConvBias::typeinfo()] = replace_conv_bias_opr; | |||
| return ret; | |||
| MIDOUT_E | |||
| } | |||
| /* ==================== ShuffleShuffleRemovePass ================= */ | |||
| @@ -2961,9 +2983,11 @@ const char* ShuffleShuffleRemovePass::name() const { | |||
| } | |||
| void ShuffleShuffleRemovePass::apply(OptState& opt) const { | |||
| MIDOUT_B("ShuffleShuffleRemovePass::apply") | |||
| opt.set_var_replace_check_flag(VarReplaceCheckFlag::CHECK_SHAPE | | |||
| VarReplaceCheckFlag::CHECK_DTYPE); | |||
| Impl{opt}; | |||
| MIDOUT_E | |||
| } | |||
| // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} | |||
| // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} | |||
| @@ -14,6 +14,16 @@ | |||
| #include "megbrain/opr/dnn/convolution.h" | |||
| #include "megbrain/opr/tensor_manip.h" | |||
| #include "megbrain/utils/hash_ct.h" | |||
| #include "midout.h" | |||
| MIDOUT_DECL(megbrain_weight_preprocess) | |||
| #define MIDOUT_B(tag) \ | |||
| MIDOUT_BEGIN(megbrain_weight_preprocess, midout_iv(MGB_HASH_STR(tag))) { | |||
| #define MIDOUT_E \ | |||
| } \ | |||
| MIDOUT_END(); | |||
| using namespace mgb; | |||
| using namespace gopt; | |||
| using namespace cg; | |||
| @@ -23,6 +33,7 @@ const char* WinogradTransformReplacePass::name() const { | |||
| } | |||
| void WinogradTransformReplacePass::apply(OptState& opt) const { | |||
| MIDOUT_B("WinogradTransformReplacePass::apply") | |||
| auto rewriter = opt.graph().make_rewriter(); | |||
| ConstVarPropogate cvprop{ConstVarType::IMMUTABLE_AND_PARAM}; | |||
| opt.graph().iter([&cvprop](OperatorNodeBase *opr) { | |||
| @@ -174,6 +185,7 @@ void WinogradTransformReplacePass::apply(OptState& opt) const { | |||
| opt.graph().iter(on_opr); | |||
| rewriter.apply_inplace(); | |||
| MIDOUT_E | |||
| } | |||
| /** | |||
| @@ -855,10 +855,12 @@ VarNode* CollectiveComm::grad(VarNode* out_grad) const { | |||
| return ModeTrait::from_mode(m_param.mode).grad(out_grad, this); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(CollectiveComm) { | |||
| mgb_assert(out_grad.size() == 1, "CollectiveComm should only have one grad"); | |||
| return opr.grad(out_grad[0]); | |||
| } | |||
| #endif | |||
| /* ===================== shallow copy ===================== */ | |||
| @@ -109,6 +109,7 @@ cg::OperatorNodeBase::NodeProp* RemoteSend::do_make_node_prop() const { | |||
| return prop; | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(RemoteSend) { | |||
| mgb_assert(opr.is_grad()); | |||
| return RemoteRecv::make(opr.key() + ":grad", | |||
| @@ -118,6 +119,7 @@ MGB_IMPL_OPR_GRAD(RemoteSend) { | |||
| opr.input(0)->shape(), opr.input(0)->dtype()) | |||
| .node(); | |||
| } | |||
| #endif | |||
| /* ===================== RemoteRecv ===================== */ | |||
| @@ -552,6 +552,7 @@ void Elemwise::call_megdnn_opr_exec( | |||
| opr->exec(inp, out); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(Elemwise) { | |||
| SymbolVar i[5]; | |||
| SymbolVar i0(opr.input(0)), i1, i2, out(opr.output(0)), | |||
| @@ -730,6 +731,7 @@ MGB_IMPL_OPR_GRAD(Elemwise) { | |||
| result = -result; | |||
| return result.node(); | |||
| } | |||
| #endif | |||
| VarNode* Elemwise::sum_grad_list(VarNode *wrt, VarNodeArray &grads) { | |||
| mgb_assert(!grads.empty()); | |||
| @@ -814,6 +816,7 @@ TypeCvt::NodeProp* TypeCvt::do_make_node_prop() const { | |||
| return ret; | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(TypeCvt) { | |||
| MGB_MARK_USED_VAR(wrt_idx); | |||
| auto itype = opr.input(0)->dtype(), otype = opr.output(0)->dtype(); | |||
| @@ -826,6 +829,7 @@ MGB_IMPL_OPR_GRAD(TypeCvt) { | |||
| } | |||
| return TypeCvt::make(out_grad[0], opr.input(0)->dtype()).node(); | |||
| } | |||
| #endif | |||
| void TypeCvt::mem_plan_fwd_in2out_writable() { | |||
| if (input(0)->dtype().size() == output(0)->dtype().size() && | |||
| @@ -963,10 +967,12 @@ void AddUpdate::record_execute_deps(ExecDependencyArray& deps) { | |||
| record_megdnn_opr(deps); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(AddUpdate) { | |||
| // actually valid, just not implemented | |||
| return InvalidGrad::make(opr, wrt_idx); | |||
| } | |||
| #endif | |||
| /* =========================== Reduce =========================== */ | |||
| @@ -1698,6 +1704,7 @@ void Reduce::create_megdnn_opr() { | |||
| create_operator<megdnn::Reduce>()); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(Reduce) { | |||
| for (size_t i = 1; i < opr.output().size(); ++ i) | |||
| mgb_assert(!out_grad[i]); | |||
| @@ -1733,7 +1740,7 @@ MGB_IMPL_OPR_GRAD(Reduce) { | |||
| grad = TypeCvt::make(grad, iv.dtype()); | |||
| return grad.node(); | |||
| } | |||
| #endif | |||
| void Reduce::record_execute_deps(ExecDependencyArray& deps) { | |||
| record_megdnn_opr(deps); | |||
| @@ -1783,11 +1790,13 @@ void PowC::init_output_static_infer_desc() { | |||
| {SourceType::DEP, {{input(0), DepType::VALUE}}, infer_value}); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(PowC) { | |||
| auto exp = opr.param().exp; | |||
| return (exp * SymbolVar{out_grad[0]} * | |||
| PowC::make(opr.input(0), exp - 1, opr.config())) | |||
| .node(); | |||
| } | |||
| #endif | |||
| // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} | |||
| @@ -106,6 +106,7 @@ void MatrixMul::scn_do_execute() { | |||
| MGB_FINALLY({ tparam = this->param(); }); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(MatrixMul) { | |||
| mgb_assert(opr.input(0)->dtype().category() == DTypeCategory::FLOAT, | |||
| "only float data type supported for grad"); | |||
| @@ -128,6 +129,7 @@ MGB_IMPL_OPR_GRAD(MatrixMul) { | |||
| } | |||
| return grad.node(); | |||
| } | |||
| #endif | |||
| /* ================= BatchedMatrixMul ================= */ | |||
| @@ -224,6 +226,7 @@ void BatchedMatrixMul::scn_do_execute() { | |||
| MGB_FINALLY({ tparam = this->param(); }); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(BatchedMatrixMul) { | |||
| mgb_assert(opr.input(0)->dtype().category() == DTypeCategory::FLOAT, | |||
| "only float data type supported for grad"); | |||
| @@ -251,6 +254,7 @@ MGB_IMPL_OPR_GRAD(BatchedMatrixMul) { | |||
| } | |||
| return grad.node(); | |||
| } | |||
| #endif | |||
| /* ================= Dot ================= */ | |||
| @@ -327,6 +331,7 @@ void Dot::add_input_layout_constraint() { | |||
| input(1)->add_layout_constraint(check); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(Dot) { | |||
| auto other_input = opr.input(wrt_idx == 0 ? 1 : 0); | |||
| auto ishp0 = opr::GetVarShape::make(opr.input(0)), | |||
| @@ -336,6 +341,7 @@ MGB_IMPL_OPR_GRAD(Dot) { | |||
| Broadcast::make(mul(out_grad[0], other_input), max_ishp), | |||
| wrt_idx ? ishp1 : ishp0).node(); | |||
| } | |||
| #endif | |||
| SymbolVar Dot::make(SymbolVar opr0, SymbolVar opr1, | |||
| const OperatorNodeConfig &config) { | |||
| @@ -350,6 +356,8 @@ void Dot::record_execute_deps(ExecDependencyArray &deps) { | |||
| MGB_DYN_TYPE_OBJ_FINAL_IMPL(MatrixInverse); | |||
| MEGDNN_OPR_INIT1(MatrixInverse, "matrix_inv") | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(MatrixInverse) { | |||
| SymbolVar a = opr.output(0); | |||
| // TODO: use unified MatrixMul interface when we have it | |||
| @@ -364,6 +372,7 @@ MGB_IMPL_OPR_GRAD(MatrixInverse) { | |||
| a_bnn); | |||
| return da.reshape(a.symshape()).node(); | |||
| } | |||
| #endif | |||
| /* ================= SVD ================= */ | |||
| @@ -386,6 +395,7 @@ SVD::SVD(VarNode* src, const Param& param, const OperatorNodeConfig& config) : | |||
| } | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| namespace { | |||
| /*! | |||
| @@ -477,7 +487,9 @@ OP(*, {}, {}) | |||
| #undef OP | |||
| } // anonymous namespace | |||
| #endif | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(SVD) { | |||
| /** | |||
| * The formula is copied from | |||
| @@ -555,6 +567,7 @@ MGB_IMPL_OPR_GRAD(SVD) { | |||
| I_n - matmul(v, v, param01))); | |||
| return ret.reshape(a.symshape()).node(); | |||
| } | |||
| #endif | |||
| SymbolVarArray SVD::make(const SymbolVar& src, const Param& param, | |||
| const OperatorNodeConfig& config) { | |||
| @@ -818,6 +818,7 @@ SymbolVar CondExecMark::mark_if_need(SymbolVar maybe_ppv, SymbolVar input, | |||
| return input; | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(CondExecMark) { | |||
| if (wrt_idx == opr.input().size() - 1 || !out_grad.at(wrt_idx)) { | |||
| return nullptr; | |||
| @@ -841,6 +842,7 @@ MGB_IMPL_OPR_GRAD(CondExecMark) { | |||
| {1, grad_mode}, OperatorNodeConfig{}) | |||
| ->output(0); | |||
| } | |||
| #endif | |||
| /* ============================= CondExecMerge ============================= */ | |||
| MGB_DYN_TYPE_OBJ_FINAL_IMPL(CondExecMerge); | |||
| @@ -1225,6 +1227,7 @@ CondExecMerge::NodeProp* CondExecMerge::do_make_node_prop() const { | |||
| return ret; | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(CondExecMerge) { | |||
| using Mode = CondExecMerge::Param::Mode; | |||
| if (opr.param().mode == Mode::SUM_COND_OUT && | |||
| @@ -1259,6 +1262,7 @@ MGB_IMPL_OPR_GRAD(CondExecMerge) { | |||
| OperatorNodeConfig{og->comp_node()}) | |||
| ->output(0); | |||
| } | |||
| #endif | |||
| void CondExecMerge::modify_grad_sum_list(VarNode* wrt, VarNodeArray& grads) { | |||
| if (!ExecutionMask::have_alive_instance()) { | |||
| @@ -230,6 +230,7 @@ void BatchNormForward::mem_plan_fwd_in2out_writable() { | |||
| } | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(BatchNormForward) { | |||
| mgb_assert(wrt_idx < 5); | |||
| if (wrt_idx < 3) { | |||
| @@ -242,6 +243,7 @@ MGB_IMPL_OPR_GRAD(BatchNormForward) { | |||
| return nullptr; | |||
| } | |||
| } | |||
| #endif | |||
| MGB_DYN_TYPE_OBJ_FINAL_IMPL(BatchNormBackward); | |||
| @@ -18,6 +18,19 @@ | |||
| #include "megdnn/oprs/utils.h" | |||
| //! TODO: here has to be know some megdnn::opr when there is produced midout.h | |||
| //! fix it if there is another graceful way. | |||
| #include "megdnn/oprs.h" | |||
| #include "midout.h" | |||
| MIDOUT_DECL(megbrain_opr_convolution) | |||
| #define MIDOUT_B(...) \ | |||
| MIDOUT_BEGIN(megbrain_opr_convolution, __VA_ARGS__) { | |||
| #define MIDOUT_E \ | |||
| } \ | |||
| MIDOUT_END(); | |||
| #include "../internal/megdnn_opr_wrapper.inl" | |||
| #include <array> | |||
| @@ -230,6 +243,7 @@ class TimedProfiler { | |||
| static constexpr int arity_in = OprArityTrait<Opr>::arity_in; | |||
| static constexpr int arity_out = OprArityTrait<Opr>::arity_out; | |||
| static constexpr int arity = OprArityTrait<Opr>::arity; | |||
| using ConvTensorShapes = std::array<TensorShape, arity>; | |||
| public: | |||
| @@ -295,6 +309,7 @@ double TimedProfiler<Opr>::init_timeout_setting() { | |||
| template <typename Opr> | |||
| typename TimedProfiler<Opr>::TResult TimedProfiler<Opr>::prof_impl( | |||
| const TParam& raw_param) { | |||
| MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("TimedProfiler::prof_impl"))) | |||
| auto&& param = raw_param.as_single_pod<Param>(); | |||
| CompNode cn = CompNode::load(param.comp_node_loc, param.comp_node_loc); | |||
| auto megdnn_opr = intl::create_megdnn_opr<Opr>(cn); | |||
| @@ -401,14 +416,17 @@ typename TimedProfiler<Opr>::TResult TimedProfiler<Opr>::prof_impl( | |||
| mgb_assert(ev_start->finished()); | |||
| return TResult::from_pod(Result{ev_start->elapsed_time_until(*ev_end)}); | |||
| MIDOUT_E | |||
| }; | |||
| template <typename Opr> | |||
| void TimedProfiler<Opr>::prof_init_device(const TParam& raw_param) { | |||
| MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("TimedProfiler::prof_init_device"))) | |||
| auto&& param = raw_param.as_single_pod<Param>(); | |||
| CompNode cn = CompNode::load(param.comp_node_loc, param.comp_node_loc); | |||
| // wait for cuda init, so its time does not get accounted in timeout | |||
| cn.sync(); | |||
| MIDOUT_E | |||
| } | |||
| /* =================== AlgoChooser =================== */ | |||
| @@ -426,6 +444,7 @@ class AlgoChooser { | |||
| static constexpr int arity_in = OprArityTrait<Opr>::arity_in; | |||
| static constexpr int arity_out = OprArityTrait<Opr>::arity_out; | |||
| static constexpr int arity = OprArityTrait<Opr>::arity; | |||
| using ImplAlgo = typename Opr::Algorithm*; | |||
| using MGBOpr = typename MegDNNOpr2MGBOpr<Opr>::MGBOpr; | |||
| using ConvTensorLayouts = std::array<TensorLayout, arity>; | |||
| @@ -473,8 +492,8 @@ class AlgoChooser { | |||
| //! put first | |||
| std::vector<ImplAlgo> get_all_candidates() const { | |||
| auto heu = choose_by_heuristic(); | |||
| auto&& ret = OprArityTrait<Opr>::get_all_algorithms( | |||
| m_megdnn_opr, m_layouts); | |||
| auto&& ret = OprArityTrait<Opr>::get_all_algorithms(m_megdnn_opr, | |||
| m_layouts); | |||
| bool found = false; | |||
| for (size_t i = 0; i < ret.size(); ++i) { | |||
| if (ret[i] == heu) { | |||
| @@ -491,7 +510,7 @@ class AlgoChooser { | |||
| //! get candidate algos with workspace limit. | |||
| std::vector<ImplAlgo> get_all_candidates_with_workspace_limit() const { | |||
| auto && all_algos = get_all_candidates(); | |||
| auto&& all_algos = get_all_candidates(); | |||
| auto opr = m_mgb_opr; | |||
| auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit( | |||
| opr->owner_graph(), opr->comp_node(), | |||
| @@ -633,16 +652,16 @@ AlgoChooserProfileCache::Result AlgoChooser<Opr>::get_profile_result( | |||
| algo->name(), str_on_inp_shape.c_str()); | |||
| timer.reset(); | |||
| MGB_TRY { cur_rst = ctx.profile_single_algo(algo, cur_timeout); } | |||
| MGB_CATCH(std::exception & exc, | |||
| { | |||
| mgb_log_warn("caught exception during %s: %s", | |||
| msg.c_str(), exc.what()); | |||
| continue; | |||
| }) | |||
| MGB_CATCH(std::exception & exc, { | |||
| mgb_log_warn("caught exception during %s: %s", msg.c_str(), | |||
| exc.what()); | |||
| continue; | |||
| }) | |||
| MGB_CATCH(..., { | |||
| mgb_log_warn("caught exception during %s", msg.c_str()); | |||
| continue; | |||
| }) if (!cur_rst.valid()) { | |||
| }) | |||
| if (!cur_rst.valid()) { | |||
| mgb_log_warn("timeout when %s; timeout setting: %.3fsec", | |||
| msg.c_str(), cur_timeout); | |||
| continue; | |||
| @@ -680,6 +699,7 @@ void AlgoChooser<megdnn::ConvBias>::get_origin_param_and_layouts( | |||
| template <typename Opr> | |||
| typename AlgoChooser<Opr>::ImplAlgo AlgoChooser<Opr>::choose_by_profile( | |||
| ExeContext& ctx, bool require_reproducible, bool enable_update) { | |||
| MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("AlgoChooser::choose_by_profile"))) | |||
| auto opr = ctx.mgb_opr(); | |||
| if (opr->owner_graph()->options().no_profiling_on_shape_change) { | |||
| auto algo = ctx.megdnn_opr()->execution_policy().algorithm; | |||
| @@ -720,6 +740,7 @@ typename AlgoChooser<Opr>::ImplAlgo AlgoChooser<Opr>::choose_by_profile( | |||
| opr->owner_graph(), opr->comp_node(), | |||
| opr->execution_policy().workspace_limit)); | |||
| mgb_trap(); | |||
| MIDOUT_E | |||
| } | |||
| template <> | |||
| @@ -748,7 +769,7 @@ void AlgoChooser<megdnn::ConvBias>::ExeContext:: | |||
| if (m_layouts[1].dtype.enumv() == DTypeEnum::QuantizedS8 && | |||
| param.opr_param.format == megdnn::ConvBias::Param::Format::NCHW44) { | |||
| if (winograd_preprocess_opr->param().format == | |||
| megdnn::param::MatrixMul::Format::MK4){ | |||
| megdnn::param::MatrixMul::Format::MK4) { | |||
| winograd_preprocess_opr->param().compute_mode = | |||
| ConvBias::Param::ComputeMode::FLOAT32; | |||
| param.opr_param.compute_mode = | |||
| @@ -941,6 +962,7 @@ void ConvolutionForward::init_output_dtype() { | |||
| output(0)->dtype(output_dtype); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(ConvolutionForward) { | |||
| mgb_assert(opr.input(0)->dtype().category() == DTypeCategory::FLOAT, | |||
| "only float data type supported for grad"); | |||
| @@ -960,6 +982,7 @@ MGB_IMPL_OPR_GRAD(ConvolutionForward) { | |||
| return grad.node(); | |||
| } | |||
| } | |||
| #endif | |||
| size_t ConvolutionForward::get_workspace_size_bytes( | |||
| const TensorShapeArray& input_shapes, | |||
| @@ -1086,6 +1109,7 @@ void ConvolutionBackwardData::scn_do_execute() { | |||
| intl::get_megdnn_workspace_from_var(output(1))); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(ConvolutionBackwardData) { | |||
| mgb_assert(!out_grad[1]); | |||
| if (wrt_idx == 0) { | |||
| @@ -1101,6 +1125,7 @@ MGB_IMPL_OPR_GRAD(ConvolutionBackwardData) { | |||
| } | |||
| return nullptr; | |||
| } | |||
| #endif | |||
| /* ==================== ConvolutionBackwardFilter ==================== */ | |||
| IMPL_CONV(ConvolutionBackwardFilter, "conv_bwd_filter"); | |||
| @@ -1138,6 +1163,7 @@ size_t ConvolutionBackwardFilter::get_workspace_size_bytes( | |||
| megdnn_opr(), this); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(ConvolutionBackwardFilter) { | |||
| mgb_assert(!out_grad[1]); | |||
| if (wrt_idx == 0) { | |||
| @@ -1153,6 +1179,7 @@ MGB_IMPL_OPR_GRAD(ConvolutionBackwardFilter) { | |||
| } | |||
| return nullptr; | |||
| } | |||
| #endif | |||
| /* ==================== Convolution3DForward ==================== */ | |||
| IMPL_CONV(Convolution3DForward, "conv3d_fwd"); | |||
| @@ -1192,6 +1219,7 @@ void Convolution3DForward::init_output_dtype() { | |||
| } | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(Convolution3DForward) { | |||
| mgb_assert(opr.param().data_type == | |||
| Convolution3DForward::Param::DataType::FLOAT, | |||
| @@ -1212,6 +1240,7 @@ MGB_IMPL_OPR_GRAD(Convolution3DForward) { | |||
| return grad.node(); | |||
| } | |||
| } | |||
| #endif | |||
| size_t Convolution3DForward::get_workspace_size_bytes( | |||
| const TensorShapeArray& input_shapes, | |||
| @@ -1285,6 +1314,7 @@ void Convolution3DBackwardData::scn_do_execute() { | |||
| intl::get_megdnn_workspace_from_var(output(1))); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(Convolution3DBackwardData) { | |||
| mgb_assert(!out_grad[1]); | |||
| if (wrt_idx == 0) { | |||
| @@ -1300,6 +1330,7 @@ MGB_IMPL_OPR_GRAD(Convolution3DBackwardData) { | |||
| } | |||
| return nullptr; | |||
| } | |||
| #endif | |||
| /* ==================== Convolution3DBackwardFilter ==================== */ | |||
| IMPL_CONV(Convolution3DBackwardFilter, "conv3d_bwd_filter"); | |||
| @@ -1658,6 +1689,7 @@ size_t LocalShareForward::get_workspace_size_bytes( | |||
| megdnn_opr(), this); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(LocalShareForward) { | |||
| mgb_assert(opr.input(0)->dtype().category() == DTypeCategory::FLOAT, | |||
| "only float data type supported for grad"); | |||
| @@ -1677,6 +1709,7 @@ MGB_IMPL_OPR_GRAD(LocalShareForward) { | |||
| return grad.node(); | |||
| } | |||
| } | |||
| #endif | |||
| /* ===================== LocalShareBackwardData ==================== */ | |||
| @@ -1737,6 +1770,7 @@ void LocalShareBackwardData::scn_do_execute() { | |||
| intl::get_megdnn_workspace_from_var(output(1))); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(LocalShareBackwardData) { | |||
| mgb_assert(!out_grad[1]); | |||
| if (wrt_idx == 0) { | |||
| @@ -1752,6 +1786,7 @@ MGB_IMPL_OPR_GRAD(LocalShareBackwardData) { | |||
| } | |||
| return nullptr; | |||
| } | |||
| #endif | |||
| /* ==================== LocalShareBackwardFilter ==================== */ | |||
| @@ -1792,6 +1827,7 @@ size_t LocalShareBackwardFilter::get_workspace_size_bytes( | |||
| megdnn_opr(), this); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(LocalShareBackwardFilter) { | |||
| mgb_assert(!out_grad[1]); | |||
| if (wrt_idx == 0) { | |||
| @@ -1805,6 +1841,7 @@ MGB_IMPL_OPR_GRAD(LocalShareBackwardFilter) { | |||
| } | |||
| return nullptr; | |||
| } | |||
| #endif | |||
| /* ===================== DeformableConvForward ==================== */ | |||
| @@ -1869,6 +1906,7 @@ size_t DeformableConvForward::get_workspace_size_bytes( | |||
| megdnn_opr(), this); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(DeformableConvForward) { | |||
| mgb_assert(opr.input(0)->dtype() == dtype::Float32(), | |||
| "only float data type supported for grad"); | |||
| @@ -1888,6 +1926,7 @@ MGB_IMPL_OPR_GRAD(DeformableConvForward) { | |||
| SymbolVarArray grads = {grad_arr[0], filter_grad, grad_arr[1], grad_arr[2]}; | |||
| return grads[wrt_idx].node(); | |||
| } | |||
| #endif | |||
| /* ==================== DeformableConvBackwardData ==================== */ | |||
| @@ -2265,4 +2304,4 @@ void BatchConvBiasForward::init_output_format() { | |||
| #undef IMPL_CONV | |||
| #undef MGB_FOREACH_FASTRUN_OPR | |||
| // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} | |||
| // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} | |||
| @@ -20,11 +20,13 @@ using namespace opr; | |||
| MGB_DYN_TYPE_OBJ_FINAL_IMPL(Images2NeibsForward); | |||
| MEGDNN_OPR_INIT1(Images2NeibsForward, "images2neibs") | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(Images2NeibsForward) { | |||
| mgb_assert(wrt_idx == 0 && out_grad.size() == 2 && !out_grad[1]); | |||
| return Images2NeibsBackward::make( | |||
| out_grad[0], opr.input(0), opr.param()).node(); | |||
| } | |||
| #endif | |||
| MGB_DYN_TYPE_OBJ_FINAL_IMPL(Images2NeibsBackward); | |||
| MEGDNN_OPR_INIT2(Images2NeibsBackward, "images2neibs_grad", 1, false); | |||
| @@ -20,10 +20,13 @@ using namespace opr; | |||
| MGB_DYN_TYPE_OBJ_FINAL_IMPL(LocalForward); | |||
| MEGDNN_OPR_INIT2(LocalForward, "local") | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(LocalForward) { | |||
| return intl::conv_grad<LocalBackwardData, LocalBackwardFilter>( | |||
| opr, wrt_idx, out_grad); | |||
| } | |||
| #endif | |||
| MGB_DYN_TYPE_OBJ_FINAL_IMPL(LocalBackwardData); | |||
| MEGDNN_OPR_INIT3(LocalBackwardData, "local_bwd_data", 2, false); | |||
| @@ -34,10 +37,13 @@ MEGDNN_OPR_INIT3(LocalBackwardFilter, "local_bwd_filter", 2, false); | |||
| MGB_DYN_TYPE_OBJ_FINAL_IMPL(GroupLocalForward); | |||
| MEGDNN_OPR_INIT2(GroupLocalForward, "glocal") | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(GroupLocalForward) { | |||
| return intl::conv_grad<GroupLocalBackwardData, GroupLocalBackwardFilter>( | |||
| opr, wrt_idx, out_grad); | |||
| } | |||
| #endif | |||
| MGB_DYN_TYPE_OBJ_FINAL_IMPL(GroupLocalBackwardData); | |||
| MEGDNN_OPR_INIT3(GroupLocalBackwardData, "glocal_bwd_data", 2, false); | |||
| @@ -20,12 +20,14 @@ using namespace opr; | |||
| MGB_DYN_TYPE_OBJ_FINAL_IMPL(LRNForward); | |||
| MEGDNN_OPR_INIT1(LRNForward, "lrn") | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(LRNForward) { | |||
| mgb_assert(wrt_idx == 0); | |||
| SymbolVar grad = LRNBackward::make( | |||
| opr.input(0), opr.output(0), out_grad[0], opr.param()); | |||
| return grad.node(); | |||
| } | |||
| #endif | |||
| MGB_DYN_TYPE_OBJ_FINAL_IMPL(LRNBackward); | |||
| MEGDNN_OPR_INIT3(LRNBackward, "lrn_bwd", 0, true); | |||
| @@ -19,12 +19,14 @@ using namespace opr; | |||
| MGB_DYN_TYPE_OBJ_FINAL_IMPL(PoolingForward); | |||
| MEGDNN_OPR_INIT1(PoolingForward, "pooling") | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(PoolingForward) { | |||
| mgb_assert(wrt_idx == 0); | |||
| SymbolVar grad = PoolingBackward::make( | |||
| opr.input(0), opr.output(0), out_grad[0], opr.param()); | |||
| return grad.node(); | |||
| } | |||
| #endif | |||
| MGB_DYN_TYPE_OBJ_FINAL_IMPL(PoolingBackward); | |||
| MEGDNN_OPR_INIT3(PoolingBackward, "pooling_bwd", 0, true); | |||
| @@ -40,6 +40,7 @@ SymbolVar ROIAlignForward::make(SymbolVar src, SymbolVar rois, | |||
| src.node(), rois.node(), param, config); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(ROIAlignForward) { | |||
| if (out_grad[1]) { | |||
| return InvalidGrad::make(opr, wrt_idx); | |||
| @@ -55,6 +56,7 @@ MGB_IMPL_OPR_GRAD(ROIAlignForward) { | |||
| return nullptr; | |||
| } | |||
| } | |||
| #endif | |||
| /* ==================== ROIAlignBackward ==================== */ | |||
| MGB_DYN_TYPE_OBJ_FINAL_IMPL(ROIAlignBackward); | |||
| @@ -84,6 +84,7 @@ size_t ROIPoolingForward::get_workspace_size_bytes( | |||
| input_shapes, output_shapes); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(ROIPoolingForward) { | |||
| if (out_grad[1] || wrt_idx == 2) { | |||
| return InvalidGrad::make(opr, wrt_idx); | |||
| @@ -98,6 +99,7 @@ MGB_IMPL_OPR_GRAD(ROIPoolingForward) { | |||
| return nullptr; | |||
| } | |||
| } | |||
| #endif | |||
| void ROIPoolingForward::scn_do_execute() { | |||
| return intl::MegDNNOprMethInvoker<megdnn::ROIPoolingForward>:: | |||
| @@ -146,6 +148,7 @@ SymbolVar DeformablePSROIPoolingForward::make( | |||
| return all[0]; | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(DeformablePSROIPooling) { | |||
| mgb_assert(wrt_idx <= 2); // wrt_idx = 0 or 1 or 2 | |||
| @@ -168,6 +171,7 @@ MGB_IMPL_OPR_GRAD(DeformablePSROIPooling) { | |||
| } | |||
| return nullptr; | |||
| } | |||
| #endif | |||
| /* ==================== DeformablePSROIPoolingBackward ==================== */ | |||
| MGB_DYN_TYPE_OBJ_FINAL_IMPL(DeformablePSROIPoolingBackward); | |||
| @@ -127,6 +127,7 @@ void WarpPerspectiveForward::record_execute_deps(ExecDependencyArray& deps) { | |||
| record_megdnn_opr(deps); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(WarpPerspectiveForward) { | |||
| mgb_assert(opr.input().size() == 3, | |||
| "backward with mat_idx is currently unsupported"); | |||
| @@ -145,6 +146,7 @@ MGB_IMPL_OPR_GRAD(WarpPerspectiveForward) { | |||
| } else | |||
| return InvalidGrad::make(opr, wrt_idx); | |||
| } | |||
| #endif | |||
| /* ====================== WarpPerspectiveBackwardData ====================== */ | |||
| @@ -234,6 +236,7 @@ void ResizeForward::record_execute_deps(ExecDependencyArray &deps) { | |||
| record_megdnn_opr(deps); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(ResizeForward) { | |||
| mgb_assert(opr.input().size() == 2); | |||
| if (wrt_idx == 0) { | |||
| @@ -243,6 +246,7 @@ MGB_IMPL_OPR_GRAD(ResizeForward) { | |||
| } else | |||
| return InvalidGrad::make(opr, wrt_idx); | |||
| } | |||
| #endif | |||
| /* ====================== ResizeBackward ====================== */ | |||
| @@ -83,6 +83,7 @@ void IndexingOneHot::init_output_dtype() { | |||
| output(0)->dtype(input(0)->dtype()); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(IndexingOneHot) { | |||
| if (wrt_idx == 0) { | |||
| return IndexingSetOneHot::make( | |||
| @@ -91,6 +92,7 @@ MGB_IMPL_OPR_GRAD(IndexingOneHot) { | |||
| } | |||
| return InvalidGrad::make(opr, wrt_idx); | |||
| } | |||
| #endif | |||
| /* ==================== IndexingSetOneHot ==================== */ | |||
| @@ -133,6 +135,7 @@ void IndexingSetOneHot::scn_do_execute() { | |||
| intl::get_megdnn_workspace_from_var(output(1))); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(IndexingSetOneHot) { | |||
| SymbolVar index{opr.input(1)}, sub{opr.input(2)}, og{out_grad.at(0)}; | |||
| if (wrt_idx == 0) { | |||
| @@ -144,6 +147,7 @@ MGB_IMPL_OPR_GRAD(IndexingSetOneHot) { | |||
| } | |||
| return InvalidGrad::make(opr, wrt_idx); | |||
| } | |||
| #endif | |||
| size_t IndexingSetOneHot::get_workspace_size_bytes( | |||
| const TensorShapeArray &input_shapes, | |||
| @@ -165,6 +169,7 @@ void IndexingRemap::init_output_dtype() { | |||
| output(0)->dtype(input(0)->dtype()); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(IndexingRemap) { | |||
| if (wrt_idx == 1) | |||
| return InvalidGrad::make(opr, wrt_idx); | |||
| @@ -172,6 +177,7 @@ MGB_IMPL_OPR_GRAD(IndexingRemap) { | |||
| return IndexingRemapBackward::make( | |||
| out_grad[0], opr.input(1), opr.input(0), opr.param()).node(); | |||
| } | |||
| #endif | |||
| MGB_DYN_TYPE_OBJ_FINAL_IMPL(IndexingRemapBackward); | |||
| MEGDNN_OPR_INIT3(IndexingRemapBackward, "indexing_remap_bwd", 2, false); | |||
| @@ -460,6 +466,7 @@ MGB_IMPL_FANCY_INDEXING_OPR_MODIFY( | |||
| MGB_IMPL_FANCY_INDEXING_OPR_MODIFY( | |||
| IndexingIncrMultiAxisVec, "indexing_incr_multi_axis_vec", false); | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(IndexingMultiAxisVec) { | |||
| if (wrt_idx) | |||
| return InvalidGrad::make(opr, wrt_idx); | |||
| @@ -468,7 +475,9 @@ MGB_IMPL_OPR_GRAD(IndexingMultiAxisVec) { | |||
| SymbolVar{opr.input(0)}.fill_retain_dtype(0), | |||
| out_grad.at(0), opr.index_desc()).node(); | |||
| } | |||
| #endif | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(IndexingSetMultiAxisVec) { | |||
| if (wrt_idx >= 2) | |||
| return InvalidGrad::make(opr, wrt_idx); | |||
| @@ -479,7 +488,9 @@ MGB_IMPL_OPR_GRAD(IndexingSetMultiAxisVec) { | |||
| } | |||
| return IndexingMultiAxisVec::make(out_grad.at(0), opr.index_desc()).node(); | |||
| } | |||
| #endif | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(IndexingIncrMultiAxisVec) { | |||
| if (wrt_idx >= 2) | |||
| return InvalidGrad::make(opr, wrt_idx); | |||
| @@ -488,6 +499,7 @@ MGB_IMPL_OPR_GRAD(IndexingIncrMultiAxisVec) { | |||
| } | |||
| return IndexingMultiAxisVec::make(out_grad.at(0), opr.index_desc()).node(); | |||
| } | |||
| #endif | |||
| /* ============================= Mesh Indexing ============================ */ | |||
| @@ -498,6 +510,7 @@ MGB_IMPL_FANCY_INDEXING_OPR_GET( | |||
| BatchedMeshIndexing, "batched_mesh_indexing", false, | |||
| output(0)->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);); | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(MeshIndexing) { | |||
| if (wrt_idx != 0) { | |||
| return InvalidGrad::make(opr, wrt_idx); | |||
| @@ -507,6 +520,9 @@ MGB_IMPL_OPR_GRAD(MeshIndexing) { | |||
| opr.index_desc()) | |||
| .node(); | |||
| } | |||
| #endif | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(BatchedMeshIndexing) { | |||
| if (wrt_idx != 0) { | |||
| return InvalidGrad::make(opr, wrt_idx); | |||
| @@ -516,11 +532,14 @@ MGB_IMPL_OPR_GRAD(BatchedMeshIndexing) { | |||
| opr.index_desc()) | |||
| .node(); | |||
| } | |||
| #endif | |||
| /* ========================= IncrMeshIndexing ========================= */ | |||
| MGB_IMPL_FANCY_INDEXING_OPR_MODIFY(IncrMeshIndexing, "incr_mesh_indexing", | |||
| false); | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(IncrMeshIndexing) { | |||
| if (wrt_idx > 2) { | |||
| return opr::InvalidGrad::make(opr, wrt_idx); | |||
| @@ -530,9 +549,11 @@ MGB_IMPL_OPR_GRAD(IncrMeshIndexing) { | |||
| } | |||
| return MeshIndexing::make(out_grad.at(0), opr.index_desc()).node(); | |||
| } | |||
| #endif | |||
| MGB_IMPL_FANCY_INDEXING_OPR_MODIFY(BatchedIncrMeshIndexing, | |||
| "batched_incr_mesh_indexing", false); | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(BatchedIncrMeshIndexing) { | |||
| if (wrt_idx > 2) { | |||
| return opr::InvalidGrad::make(opr, wrt_idx); | |||
| @@ -542,10 +563,12 @@ MGB_IMPL_OPR_GRAD(BatchedIncrMeshIndexing) { | |||
| } | |||
| return BatchedMeshIndexing::make(out_grad.at(0), opr.index_desc()).node(); | |||
| } | |||
| #endif | |||
| /* ======================== SetMeshIndexing =========================== */ | |||
| MGB_IMPL_FANCY_INDEXING_OPR_MODIFY(SetMeshIndexing, "set_mesh_indexing", false); | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(SetMeshIndexing) { | |||
| if (wrt_idx >= 2) { | |||
| return opr::InvalidGrad::make(opr, wrt_idx); | |||
| @@ -560,9 +583,11 @@ MGB_IMPL_OPR_GRAD(SetMeshIndexing) { | |||
| return MeshIndexing::make(out_grad.at(0), opr.index_desc()).node(); | |||
| } | |||
| } | |||
| #endif | |||
| MGB_IMPL_FANCY_INDEXING_OPR_MODIFY(BatchedSetMeshIndexing, | |||
| "batched_set_mesh_indexing", false); | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(BatchedSetMeshIndexing) { | |||
| if (wrt_idx > 2) { | |||
| return opr::InvalidGrad::make(opr, wrt_idx); | |||
| @@ -578,5 +603,6 @@ MGB_IMPL_OPR_GRAD(BatchedSetMeshIndexing) { | |||
| .node(); | |||
| } | |||
| } | |||
| #endif | |||
| // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} | |||
| @@ -764,11 +764,13 @@ Copy::NodeProp* Copy::do_make_node_prop() const { | |||
| return rst; | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(Copy) { | |||
| mgb_assert(wrt_idx == 0); | |||
| return Copy::make(out_grad[0], | |||
| OperatorNodeConfig{}.follow_comp_node(opr.input(0))).node(); | |||
| } | |||
| #endif | |||
| void Copy::add_input_layout_constraint() { | |||
| if (input(0)->comp_node() != output(0)->comp_node()) { | |||
| @@ -268,9 +268,11 @@ VarNode* Loop::grad(Loop &opr, size_t wrt_idx, const VarNodeArray &out_grad) { | |||
| return gopr->get_grad_var(wrt_idx); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(Loop) { | |||
| return Loop::grad(const_cast<Loop&>(opr), wrt_idx, out_grad); | |||
| } | |||
| #endif | |||
| cg::OperatorNodeBase::NodeProp* Loop::do_make_node_prop() const { | |||
| auto prop = LoopImpl::do_make_node_prop(); | |||
| @@ -48,23 +48,26 @@ namespace intl { | |||
| /* ================= Argmxx ================= */ | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(Argmax) { | |||
| MGB_MARK_USED_VAR(out_grad); | |||
| MGB_MARK_USED_VAR(opr); | |||
| mgb_assert(!wrt_idx); | |||
| return nullptr; | |||
| } | |||
| #endif | |||
| MGB_DYN_TYPE_OBJ_FINAL_IMPL(Argmax); | |||
| MEGDNN_OPR_INIT1(Argmax, "argmax") | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(Argmin) { | |||
| MGB_MARK_USED_VAR(out_grad); | |||
| MGB_MARK_USED_VAR(opr); | |||
| mgb_assert(!wrt_idx); | |||
| return nullptr; | |||
| } | |||
| #endif | |||
| MGB_DYN_TYPE_OBJ_FINAL_IMPL(Argmin); | |||
| MEGDNN_OPR_INIT1(Argmin, "argmin") | |||
| @@ -84,12 +87,14 @@ std::array<SymbolVar, 2> ArgsortForward::make( | |||
| return {node->output(0), node->output(1)}; | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(ArgsortForward) { | |||
| mgb_assert(out_grad.size() == 3 && wrt_idx == 0 && !out_grad[2]); | |||
| if (!out_grad[0]) | |||
| return nullptr; | |||
| return ArgsortBackward::make(out_grad[0], opr.output(1)).node(); | |||
| } | |||
| #endif | |||
| /* ================= ArgsortBackward ================= */ | |||
| @@ -107,12 +112,14 @@ Cumsum::Cumsum(VarNode* opr, const Param& param, | |||
| add_input({opr}, AddInputSortType::CUR_ADDED); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(Cumsum) { | |||
| mgb_assert(out_grad[0] && !out_grad[1]); | |||
| auto param = opr.param(); | |||
| param.reverse = !param.reverse; | |||
| return Cumsum::make(out_grad[0], param).node(); | |||
| } | |||
| #endif | |||
| SymbolVar Cumsum::make(SymbolVar opr, const Param& param, | |||
| const OperatorNodeConfig& config) { | |||
| @@ -170,6 +177,7 @@ CondTake::CondTake(VarNode *data, VarNode *mask, | |||
| } | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(CondTake) { | |||
| mgb_assert(out_grad.size() == 3 && !out_grad[2]); | |||
| if (wrt_idx == 0 && out_grad[0]) { | |||
| @@ -181,6 +189,7 @@ MGB_IMPL_OPR_GRAD(CondTake) { | |||
| } | |||
| return nullptr; | |||
| } | |||
| #endif | |||
| std::array<SymbolVar, 2> CondTake::make( | |||
| SymbolVar data, SymbolVar mask, | |||
| @@ -318,6 +327,7 @@ void TopK::record_execute_deps(ExecDependencyArray& deps) { | |||
| record_megdnn_opr(deps); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(TopK) { | |||
| if (opr.param().mode == TopK::Param::Mode::KTH_ONLY) { | |||
| mgb_assert(out_grad[0] && !out_grad[1] && !out_grad[2]); | |||
| @@ -334,5 +344,6 @@ MGB_IMPL_OPR_GRAD(TopK) { | |||
| return ArgsortBackward::make(out_grad[0], opr.output(1), opr.input(0)) | |||
| .node(); | |||
| } | |||
| #endif | |||
| // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} | |||
| @@ -316,9 +316,11 @@ VarNodeArray AllGather::grad(const VarNodeArray &out_grad) { | |||
| OperatorNodeConfig().comp_node_arr(sp_cn))); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(AllGather) { | |||
| return const_cast<AllGather&>(opr).grad(out_grad); | |||
| } | |||
| #endif | |||
| void AllGather::on_output_comp_node_stream_changed() { | |||
| } | |||
| @@ -112,19 +112,21 @@ UniqPtrWithCN<megdnn::RNGBase> RNGOpr<MegDNNOpr>::create_megdnn_opr() { | |||
| return opr; | |||
| } | |||
| #define IMPL(_cls) \ | |||
| template class RNGOpr<::megdnn::_cls>; \ | |||
| MGB_IMPL_OPR_GRAD(_cls) { \ | |||
| MGB_MARK_USED_VAR(out_grad); \ | |||
| return InvalidGrad::make(opr, wrt_idx); \ | |||
| } \ | |||
| #define IMPL(_cls) \ | |||
| MGB_IMPL_OPR_GRAD(_cls) { \ | |||
| MGB_MARK_USED_VAR(out_grad); \ | |||
| return InvalidGrad::make(opr, wrt_idx); \ | |||
| } | |||
| namespace mgb { | |||
| namespace opr { | |||
| namespace intl { | |||
| template class RNGOpr<::megdnn::GaussianRNG>; | |||
| template class RNGOpr<::megdnn::UniformRNG>; | |||
| #ifdef MGB_ENABLE_GRAD | |||
| IMPL(GaussianRNG); | |||
| IMPL(UniformRNG); | |||
| #endif | |||
| } | |||
| } | |||
| } | |||
| @@ -46,11 +46,13 @@ void Alloc::outshape_by_symvar_do_get_output_shape( | |||
| void Alloc::scn_do_execute() { | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(Alloc) { | |||
| MGB_MARK_USED_VAR(wrt_idx); | |||
| MGB_MARK_USED_VAR(out_grad); | |||
| return InvalidGrad::make(opr, 0); | |||
| } | |||
| #endif | |||
| /* ======================= Linspace ======================= */ | |||
| @@ -123,6 +125,7 @@ void Linspace::record_execute_deps(ExecDependencyArray& deps) { | |||
| std::make_unique<intl::MegDNNGraphDep>(std::move(m_megdnn_opr))); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(Linspace) { | |||
| if (wrt_idx == 2) | |||
| return InvalidGrad::make(opr, wrt_idx); | |||
| @@ -134,6 +137,7 @@ MGB_IMPL_OPR_GRAD(Linspace) { | |||
| return opr::Dot::make(og, | |||
| opr::Linspace::make(i0, i1, opr.input(2), opr.param())).node(); | |||
| } | |||
| #endif | |||
| /* ======================= Eye ======================= */ | |||
| @@ -195,9 +199,10 @@ void Eye::record_execute_deps(ExecDependencyArray& deps) { | |||
| std::make_unique<intl::MegDNNGraphDep>(std::move(m_megdnn_opr))); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(Eye) { | |||
| return InvalidGrad::make(opr, wrt_idx); | |||
| } | |||
| #endif | |||
| // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} | |||
| @@ -165,12 +165,13 @@ void GetVarShape::init_output_static_infer_desc() { | |||
| mgr.register_value_infer(output(0), | |||
| {SourceType::DEP, deps, infer_value}); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(GetVarShape) { | |||
| MGB_MARK_USED_VAR(wrt_idx); | |||
| MGB_MARK_USED_VAR(out_grad); | |||
| return nullptr; | |||
| } | |||
| #endif | |||
| SymbolVar GetVarShape::make(const VarNodeArrayView& inp, Param param, | |||
| const OperatorNodeConfig& config) { | |||
| @@ -362,11 +363,13 @@ SymbolVar Reshape::make(SymbolVar inp, SymbolVar tshp, | |||
| inp.node(), tshp.node(), unspec_axis, config); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(Reshape) { | |||
| if (wrt_idx) | |||
| return InvalidGrad::make(opr, wrt_idx); | |||
| return Reshape::make(out_grad[0], GetVarShape::make(opr.input(0))).node(); | |||
| } | |||
| #endif | |||
| Maybe<TensorLayout> Reshape::reshapebrdcast_get_dest_layout( | |||
| const TensorLayout &src, const TensorShape &tshape) const { | |||
| @@ -429,12 +432,14 @@ SymbolVar Broadcast::make(SymbolVar inp, SymbolVar tshp, | |||
| inp.node(), tshp.node(), config); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(Broadcast) { | |||
| if (wrt_idx) | |||
| return InvalidGrad::make(opr, wrt_idx); | |||
| return Reduce::make(out_grad.at(0), Reduce::Mode::SUM, | |||
| GetVarShape::make(opr.input(0))).node(); | |||
| } | |||
| #endif | |||
| Maybe<TensorLayout> Broadcast::reshapebrdcast_get_dest_layout( | |||
| const TensorLayout &src, const TensorShape &tshape) const { | |||
| @@ -562,9 +567,11 @@ VarNode* Dimshuffle::grad( | |||
| return Dimshuffle::make(out_grad.at(0), back, m_pattern.size()).node(); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(Dimshuffle) { | |||
| return opr.grad(wrt_idx, out_grad); | |||
| } | |||
| #endif | |||
| // f}}} | |||
| @@ -631,10 +638,12 @@ AxisAddRemove::NodeProp* AxisAddRemove::do_make_node_prop() const { | |||
| return ret; | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(AxisAddRemove) { | |||
| MGB_MARK_USED_VAR(wrt_idx); | |||
| return Reshape::make(out_grad[0], GetVarShape::make(opr.input(0))).node(); | |||
| } | |||
| #endif | |||
| // f}}} | |||
| @@ -642,6 +651,7 @@ MGB_IMPL_OPR_GRAD(AxisAddRemove) { | |||
| MGB_IMPL_FANCY_INDEXING_OPR_GET(Subtensor, "subtensor", true); | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(Subtensor) { | |||
| if (wrt_idx) | |||
| return InvalidGrad::make(opr, wrt_idx); | |||
| @@ -650,6 +660,7 @@ MGB_IMPL_OPR_GRAD(Subtensor) { | |||
| SymbolVar{opr.input(0)}.fill_retain_dtype(0), | |||
| out_grad.at(0), opr.index_desc()).node(); | |||
| } | |||
| #endif | |||
| void Subtensor::init_output_static_infer_desc() { | |||
| using namespace cg::static_infer; | |||
| @@ -783,6 +794,7 @@ void SetSubtensor::modify(DeviceTensorND &sub, const DeviceTensorND &val) { | |||
| sub.copy_from_fixlayout(val); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(SetSubtensor) { | |||
| if (wrt_idx >= 2) | |||
| return InvalidGrad::make(opr, wrt_idx); | |||
| @@ -793,6 +805,7 @@ MGB_IMPL_OPR_GRAD(SetSubtensor) { | |||
| } | |||
| return Subtensor::make(out_grad.at(0), opr.index_desc()).node(); | |||
| } | |||
| #endif | |||
| // f}}} | |||
| @@ -813,6 +826,7 @@ void IncrSubtensor::modify(DeviceTensorND &sub, const DeviceTensorND &val) { | |||
| opr->exec(sub.as_megdnn(), val.as_megdnn()); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(IncrSubtensor) { | |||
| if (wrt_idx >= 2) | |||
| return InvalidGrad::make(opr, wrt_idx); | |||
| @@ -821,6 +835,7 @@ MGB_IMPL_OPR_GRAD(IncrSubtensor) { | |||
| } | |||
| return Subtensor::make(out_grad.at(0), opr.index_desc()).node(); | |||
| } | |||
| #endif | |||
| // f}}} | |||
| @@ -1085,6 +1100,7 @@ void Split::do_execute(ExecEnv &env) { | |||
| } | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(Split) { | |||
| if (wrt_idx) | |||
| return InvalidGrad::make(opr, wrt_idx); | |||
| @@ -1100,6 +1116,7 @@ MGB_IMPL_OPR_GRAD(Split) { | |||
| return Concat::make(grad, opr.options().axis, | |||
| OperatorNodeConfig{}.follow_comp_node(opr.input(0))).node(); | |||
| } | |||
| #endif | |||
| void Split::mem_plan_fwd_in2out_readonly() { | |||
| m_readonly_fwd_called = true; | |||
| @@ -1236,6 +1253,7 @@ SymbolVar Concat::make(const VarNodeArrayView& inp, int axis, | |||
| axis, config); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(Concat) { | |||
| auto axis = opr.axis(); | |||
| mgb_assert(out_grad.size() == 1); | |||
| @@ -1250,6 +1268,7 @@ MGB_IMPL_OPR_GRAD(Concat) { | |||
| OperatorNodeConfig().comp_node_arr(comp_node)); | |||
| return cg::to_var_node_array(ret); | |||
| } | |||
| #endif | |||
| void Concat::scn_do_execute() { | |||
| auto&& out = output(0)->dev_tensor(); | |||
| @@ -1507,6 +1526,7 @@ void ParamPackSplit::init_output_static_infer_desc() { | |||
| } | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(ParamPackSplit) { | |||
| mgb_assert(out_grad.size() == opr.output().size()); | |||
| SmallVector<SymbolVar> grad; | |||
| @@ -1531,6 +1551,7 @@ MGB_IMPL_OPR_GRAD(ParamPackSplit) { | |||
| OperatorNodeConfig{}.follow_comp_node(opr.input(0))) | |||
| .node(); | |||
| } | |||
| #endif | |||
| // f}}} | |||
| /* f{{{ ======================= RelayoutFormat ======================= */ | |||
| @@ -255,9 +255,11 @@ void MarkDynamicVar::scn_do_execute() { | |||
| o->dev_tensor().copy_from_fixlayout(i->dev_tensor()); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(MarkDynamicVar) { | |||
| return MarkDynamicVar::make(out_grad.at(0)).node(); | |||
| } | |||
| #endif | |||
| MarkDynamicVar::MarkDynamicVar(VarNode *node, const OperatorNodeConfig &config): | |||
| Super{node->owner_graph(), config, "mark_dyn", {node}} | |||
| @@ -381,10 +383,12 @@ CallbackInjector::mixin_get_static_infer_desc(OperatorNodeBase &opr) { | |||
| } | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(CallbackInjector) { | |||
| MGB_MARK_USED_VAR(wrt_idx); | |||
| return out_grad.at(0); | |||
| } | |||
| #endif | |||
| /* ===================== MarkNoBroadcastElemwise ===================== */ | |||
| MGB_DYN_TYPE_OBJ_FINAL_IMPL(MarkNoBroadcastElemwise); | |||
| @@ -404,9 +408,11 @@ SymbolVar MarkNoBroadcastElemwise::make( | |||
| input.node(), config); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(MarkNoBroadcastElemwise) { | |||
| return out_grad.at(0); | |||
| } | |||
| #endif | |||
| /* ===================== Identity ===================== */ | |||
| MGB_DYN_TYPE_OBJ_FINAL_IMPL(Identity); | |||
| @@ -429,9 +435,11 @@ SymbolVar Identity::make( | |||
| return input.insert_single_output_opr<Identity>(input.node(), config); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(Identity) { | |||
| return out_grad.at(0); | |||
| } | |||
| #endif | |||
| /* ===================== AssertEqual ===================== */ | |||
| @@ -530,6 +538,7 @@ SymbolVar SetGrad::make(SymbolVar input, const GradGetter& grad_getter, | |||
| input.node(), grad_getter, config); | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(SetGrad) { | |||
| MGB_MARK_USED_VAR(wrt_idx); | |||
| MGB_MARK_USED_VAR(out_grad); | |||
| @@ -538,6 +547,7 @@ MGB_IMPL_OPR_GRAD(SetGrad) { | |||
| "var returned by grad_getter belongs to a different comp graph"); | |||
| return grad.node(); | |||
| } | |||
| #endif | |||
| /* ===================== InvalidGrad ===================== */ | |||
| @@ -690,6 +700,7 @@ VirtualLoss::NodeProp* VirtualLoss::do_make_node_prop() const { | |||
| return ret; | |||
| } | |||
| #ifdef MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(VirtualLoss) { | |||
| mgb_assert(out_grad.size() == 1); | |||
| auto mid = opr.input().size() / 2; | |||
| @@ -698,6 +709,7 @@ MGB_IMPL_OPR_GRAD(VirtualLoss) { | |||
| } | |||
| return nullptr; | |||
| } | |||
| #endif | |||
| #else | |||
| VarNode* InvalidGrad::make(const OperatorNodeBase&, size_t) { | |||
| @@ -24,6 +24,16 @@ | |||
| #include "megdnn/opr_param_json.h" | |||
| #endif | |||
| #include "megbrain/utils/hash_ct.h" | |||
| #include "midout.h" | |||
| MIDOUT_DECL(megbrain_opr_footprint) | |||
| #define MIDOUT_B(...) \ | |||
| MIDOUT_BEGIN(megbrain_opr_footprint, __VA_ARGS__) { | |||
| #define MIDOUT_E \ | |||
| } \ | |||
| MIDOUT_END(); | |||
| using namespace mgb; | |||
| namespace { | |||
| @@ -581,9 +591,12 @@ std::shared_ptr<json::Value> opr_param_json_func<opr::Subtensor>( | |||
| template <class OprType> | |||
| void OprFootprint::add_single_comp_footprint() { | |||
| MIDOUT_B(OprType, | |||
| midout_iv(MGB_HASH_STR("OprFootprint::add_single_comp_footprint"))) | |||
| auto&& record = m_type2comp_footprint.emplace(OprType::typeinfo(), | |||
| opr_footprint_func<OprType>); | |||
| mgb_assert(record.second, "duplicate opr typeinfo"); | |||
| MIDOUT_E | |||
| } | |||
| #if MGB_ENABLE_JSON | |||