GitOrigin-RevId: 1b438fc436
tags/v1.11.0
| @@ -27,10 +27,16 @@ struct DnnOprCaller { | |||
| return mgb::opr::intl::create_megdnn_opr<Opr>(cn); | |||
| } | |||
| megdnn::Workspace create_workspace(TensorLayout layout) { | |||
| dev_tensor = Tensor::make(layout, cn)->dev_tensor(); | |||
| workspace = | |||
| megdnn::Workspace(dev_tensor.raw_ptr(), dev_tensor.storage().size()); | |||
| Workspace create_workspace(size_t sz) { | |||
| if (workspace.raw_ptr) { | |||
| mgb_throw(MegBrainError, "workspace should not be applicated many times"); | |||
| } | |||
| if (sz) { | |||
| TensorLayout layout({sz}, dtype::Byte()); | |||
| dev_tensor = Tensor::make(layout, cn)->dev_tensor(); | |||
| workspace = megdnn::Workspace( | |||
| dev_tensor.raw_ptr(), dev_tensor.storage().size()); | |||
| } | |||
| return workspace; | |||
| } | |||
| @@ -135,21 +135,16 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
| param.window_w = IW - (OW - 1) * param.stride_w; | |||
| TensorND src = inputs[0]->dnn_tensor(); | |||
| DeviceTensorND dst = | |||
| BlobManager::inst()->alloc_workspace_with_defrag(cn, dst_layout); | |||
| auto dst = Tensor::make(dst_layout, cn); | |||
| size_t sz = setup_algo<megdnn::Pooling>( | |||
| {src_layout, dst_layout}, dnn_opr.op.get(), 0, false, false, cn, | |||
| ::megdnn::param::ExecutionPolicy{}, false); | |||
| megdnn::Workspace dnn_wk; | |||
| if (sz) { | |||
| TensorLayout w_layout({sz}, dtype::Byte()); | |||
| dnn_wk = dnn_opr.create_workspace(w_layout); | |||
| } | |||
| dnn_opr.op->exec(src, dst.as_megdnn(), dnn_wk); | |||
| auto dnn_wk = dnn_opr.create_workspace(sz); | |||
| dnn_opr.op->exec(src, dst->dnn_tensor(), dnn_wk); | |||
| return {Tensor::make(dst)}; | |||
| return {dst}; | |||
| } | |||
| OP_TRAIT_REG(AdaptivePooling, AdaptivePooling) | |||
| @@ -160,10 +160,8 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
| bool empty_input = src_layout.is_empty(); | |||
| size_t nr_inp = inputs.size(); | |||
| DeviceTensorND reserve; | |||
| size_t sz = 0, rsz = 0; | |||
| TensorLayout w_layout({sz}, dtype::Byte()); | |||
| TensorLayout r_layout({rsz}, dtype::Byte()); | |||
| if (!empty_input) { | |||
| @@ -172,79 +170,71 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
| src_layout, src_layout, src_layout); | |||
| rsz = dnn_opr.op->get_reserve_in_bytes(src_layout); | |||
| w_layout = TensorLayout({sz}, dtype::Byte()); | |||
| r_layout = TensorLayout({rsz}, dtype::Byte()); | |||
| } | |||
| auto dnn_wk = dnn_opr.create_workspace(w_layout); | |||
| reserve = BlobManager::inst()->alloc_workspace_with_defrag(comp_node, r_layout); | |||
| auto dnn_wk = dnn_opr.create_workspace(sz); | |||
| auto reserve = Tensor::make(r_layout, comp_node); | |||
| // alloc memory | |||
| DeviceTensorND y = | |||
| BlobManager::inst()->alloc_workspace_with_defrag(comp_node, src_layout); | |||
| auto y = Tensor::make(src_layout, comp_node); | |||
| DeviceTensorND save_mean = | |||
| BlobManager::inst()->alloc_workspace_with_defrag(comp_node, scale_layout); | |||
| DeviceTensorND save_variance = | |||
| BlobManager::inst()->alloc_workspace_with_defrag(comp_node, scale_layout); | |||
| auto save_mean = Tensor::make(scale_layout, comp_node); | |||
| auto save_variance = Tensor::make(scale_layout, comp_node); | |||
| if (op_def.fwd_mode == ::megdnn::param::BN::FwdMode::INFERENCE) { | |||
| if (!empty_input) | |||
| dnn_opr.op->exec( | |||
| inp_tensornds[0], inp_tensornds[1], inp_tensornds[2], | |||
| inp_tensornds[3], inp_tensornds[4], save_mean.as_megdnn(), | |||
| save_variance.as_megdnn(), reserve.as_megdnn(), y.as_megdnn(), | |||
| inp_tensornds[3], inp_tensornds[4], save_mean->dnn_tensor(), | |||
| save_variance->dnn_tensor(), reserve->dnn_tensor(), y->dnn_tensor(), | |||
| dnn_wk); | |||
| return {inputs[3], inputs[4], Tensor::make(reserve), Tensor::make(y)}; | |||
| return {inputs[3], inputs[4], reserve, y}; | |||
| } else { | |||
| DeviceTensorND mean, variance; | |||
| if (nr_inp == 5) { | |||
| mean = BlobManager::inst()->alloc_workspace_with_defrag( | |||
| comp_node, scale_layout); | |||
| variance = BlobManager::inst()->alloc_workspace_with_defrag( | |||
| comp_node, scale_layout); | |||
| auto mean = Tensor::make(scale_layout, comp_node); | |||
| auto variance = Tensor::make(scale_layout, comp_node); | |||
| megdnn::RefPtr src_ptr1( | |||
| inp_tensornds[3].get_ref_ptr().get_ptr(), inputs[3]->offset()); | |||
| megdnn::RefPtr dst_ptr1( | |||
| mean.storage().get_ref_ptr(), mean.storage().offset(), false); | |||
| mean->dev_tensor().storage().get_ref_ptr(), | |||
| mean->dev_tensor().storage().offset(), false); | |||
| comp_node.peer_copy_to_ref( | |||
| comp_node, dst_ptr1, src_ptr1, scale_layout.span().high_byte); | |||
| megdnn::RefPtr src_ptr2( | |||
| inp_tensornds[4].get_ref_ptr().get_ptr(), inputs[4]->offset()); | |||
| megdnn::RefPtr dst_ptr2( | |||
| variance.storage().get_ref_ptr(), variance.storage().offset(), | |||
| false); | |||
| variance->dev_tensor().storage().get_ref_ptr(), | |||
| variance->dev_tensor().storage().offset(), false); | |||
| comp_node.peer_copy_to_ref( | |||
| comp_node, dst_ptr2, src_ptr2, scale_layout.span().high_byte); | |||
| if (!empty_input) | |||
| dnn_opr.op->exec( | |||
| inp_tensornds[0], inp_tensornds[1], inp_tensornds[2], | |||
| mean.as_megdnn(), variance.as_megdnn(), save_mean.as_megdnn(), | |||
| save_variance.as_megdnn(), reserve.as_megdnn(), y.as_megdnn(), | |||
| dnn_wk); | |||
| mean->dnn_tensor(), variance->dnn_tensor(), | |||
| save_mean->dnn_tensor(), save_variance->dnn_tensor(), | |||
| reserve->dnn_tensor(), y->dnn_tensor(), dnn_wk); | |||
| return {Tensor::make(mean), Tensor::make(variance), | |||
| Tensor::make(save_mean), Tensor::make(save_variance), | |||
| Tensor::make(reserve), Tensor::make(y)}; | |||
| return {mean, variance, save_mean, save_variance, reserve, y}; | |||
| } | |||
| TensorLayout m_layout({0}, scale_layout.dtype); | |||
| mean = BlobManager::inst()->alloc_workspace_with_defrag(comp_node, m_layout); | |||
| variance = | |||
| BlobManager::inst()->alloc_workspace_with_defrag(comp_node, m_layout); | |||
| auto mean = Tensor::make(m_layout, comp_node); | |||
| auto variance = Tensor::make(m_layout, comp_node); | |||
| if (!empty_input) { | |||
| dnn_opr.op->exec( | |||
| inp_tensornds[0], inp_tensornds[1], inp_tensornds[2], | |||
| mean.as_megdnn(), variance.as_megdnn(), save_mean.as_megdnn(), | |||
| save_variance.as_megdnn(), reserve.as_megdnn(), y.as_megdnn(), | |||
| mean->dnn_tensor(), variance->dnn_tensor(), save_mean->dnn_tensor(), | |||
| save_variance->dnn_tensor(), reserve->dnn_tensor(), y->dnn_tensor(), | |||
| dnn_wk); | |||
| } | |||
| return {Tensor::make(save_mean), Tensor::make(save_variance), | |||
| Tensor::make(reserve), Tensor::make(y)}; | |||
| return {save_mean, save_variance, reserve, y}; | |||
| } | |||
| } | |||
| @@ -44,10 +44,9 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
| DnnOprCaller<megdnn::CondTake> dnn_op(inp->comp_node()); | |||
| dnn_op.op->param().val = 1; | |||
| TensorLayout m_layout( | |||
| {dnn_op.op->get_workspace_in_bytes(inp->layout())}, dtype::Byte()); | |||
| size_t sz = dnn_op.op->get_workspace_in_bytes(inp->layout()); | |||
| auto dnn_workspace = dnn_op.create_workspace(m_layout); | |||
| auto dnn_workspace = dnn_op.create_workspace(sz); | |||
| dnn_op.op->exec( | |||
| inp->dev_tensor().as_megdnn(), msk->dev_tensor().as_megdnn(), | |||
| @@ -165,11 +165,10 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
| TensorLayout empty_shp({0}, inputs[0]->dtype()); | |||
| empty_shp.ndim = 0; | |||
| DeviceTensorND empty_bias = | |||
| BlobManager::inst()->alloc_workspace_with_defrag(cn, empty_shp); | |||
| auto empty_bias = Tensor::make(empty_shp, cn); | |||
| inp_tensornds[2] = empty_bias.as_megdnn(); | |||
| inp_tensornds[3] = empty_bias.as_megdnn(); | |||
| inp_tensornds[2] = empty_bias->dnn_tensor(); | |||
| inp_tensornds[3] = empty_bias->dnn_tensor(); | |||
| size_t sz = setup_algo<megdnn::ConvBiasForward>( | |||
| {inp_shapes[0], inp_shapes[1], empty_shp, empty_shp, oup_shapes[0]}, | |||
| @@ -177,17 +176,15 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
| &inp_tensornds); | |||
| // alloc memory | |||
| DeviceTensorND out = | |||
| BlobManager::inst()->alloc_workspace_with_defrag(cn, out_layout); | |||
| auto out = Tensor::make(out_layout, cn); | |||
| TensorLayout w_layout({sz}, dtype::Byte()); | |||
| auto dnn_wk = dnn_opr.create_workspace(w_layout); | |||
| auto dnn_wk = dnn_opr.create_workspace(sz); | |||
| // exeucte | |||
| dnn_opr.op->exec( | |||
| inp_tensornds[0], inp_tensornds[1], empty_bias.as_megdnn(), | |||
| empty_bias.as_megdnn(), out.as_megdnn(), nullptr, dnn_wk); | |||
| return {Tensor::make(out)}; | |||
| inp_tensornds[0], inp_tensornds[1], inp_tensornds[2], inp_tensornds[3], | |||
| out->dnn_tensor(), nullptr, dnn_wk); | |||
| return {out}; | |||
| } | |||
| OP_TRAIT_REG(Convolution, Convolution, opr::Convolution) | |||
| @@ -368,6 +365,8 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
| def, inputs[1]->layout().ndim, inputs[0]->layout(), inputs[1]->layout(), | |||
| cn); | |||
| auto out = Tensor::make(out_layout, cn); | |||
| using TensorND = megdnn::TensorND; | |||
| SmallVector<TensorND> inp_tensornds(inputs.size()); | |||
| TensorLayoutArray inp_shapes(inputs.size()), oup_shapes(output_descs.size()); | |||
| @@ -383,16 +382,11 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
| {inp_shapes[0], inp_shapes[1], oup_shapes[0]}, dnn_opr.op.get(), 0, false, | |||
| false, cn, convbwd.policy(), false, &inp_tensornds); | |||
| DeviceTensorND out = | |||
| BlobManager::inst()->alloc_workspace_with_defrag(cn, out_layout); | |||
| auto wk = Blob::make(cn, sz); | |||
| auto ptr = wk->storage().get(); | |||
| megdnn::Workspace dnn_wk(ptr, sz); | |||
| auto dnn_wk = dnn_opr.create_workspace(sz); | |||
| // exeucte | |||
| dnn_opr.op->exec(inp_tensornds[0], inp_tensornds[1], out.as_megdnn(), dnn_wk); | |||
| return {Tensor::make(out)}; | |||
| dnn_opr.op->exec(inp_tensornds[0], inp_tensornds[1], out->dnn_tensor(), dnn_wk); | |||
| return {out}; | |||
| } | |||
| OP_TRAIT_REG(ConvolutionBackwardData, ConvolutionBackwardData) | |||
| @@ -549,18 +543,13 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
| false, cn, conv.policy(), false, &inp_tensornds); | |||
| // alloc memory | |||
| DeviceTensorND out = | |||
| BlobManager::inst()->alloc_workspace_with_defrag(cn, out_layout); | |||
| auto out = Tensor::make(out_layout, cn); | |||
| megdnn::Workspace dnn_wk; | |||
| if (sz != 0) { | |||
| TensorLayout w_layout({sz}, dtype::Byte()); | |||
| dnn_wk = dnn_opr.create_workspace(w_layout); | |||
| } | |||
| auto dnn_wk = dnn_opr.create_workspace(sz); | |||
| // exeucte | |||
| dnn_opr.op->exec(inp_tensornds[0], inp_tensornds[1], out.as_megdnn(), dnn_wk); | |||
| return {Tensor::make(out)}; | |||
| dnn_opr.op->exec(inp_tensornds[0], inp_tensornds[1], out->dnn_tensor(), dnn_wk); | |||
| return {out}; | |||
| } | |||
| OP_TRAIT_REG(Convolution3D, Convolution3D, opr::Convolution3D) | |||
| @@ -615,8 +604,7 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
| megdnn::Convolution3DBackwardData::deduce_layout_impl( | |||
| wlayout, dlayout, op_def.param(), oup_layout); | |||
| } | |||
| DeviceTensorND oup = | |||
| BlobManager::inst()->alloc_workspace_with_defrag(cn, oup_layout); | |||
| auto oup = Tensor::make(oup_layout, cn); | |||
| SmallVector<megdnn::TensorND> inp_tensornds(inputs.size()); | |||
| inp_tensornds[0] = inputs[0]->dnn_tensor(); | |||
| @@ -624,14 +612,10 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
| size_t wk_size = setup_algo<megdnn::Convolution3DBackwardData>( | |||
| {wlayout, dlayout, oup_layout}, dnn_opr.get(), 0, false, false, cn, | |||
| op_def.policy(), false, &inp_tensornds); | |||
| megdnn::Workspace dnn_wk; | |||
| if (wk_size != 0) { | |||
| TensorLayout w_layout({wk_size}, dtype::Byte()); | |||
| dnn_wk = caller.create_workspace(w_layout); | |||
| } | |||
| auto dnn_wk = caller.create_workspace(wk_size); | |||
| dnn_opr->exec(inp_tensornds[0], inp_tensornds[1], oup.as_megdnn(), dnn_wk); | |||
| return {Tensor::make(oup)}; | |||
| dnn_opr->exec(inp_tensornds[0], inp_tensornds[1], oup->dnn_tensor(), dnn_wk); | |||
| return {oup}; | |||
| } | |||
| auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { | |||
| @@ -121,10 +121,10 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
| megdnn::Elemwise::deduce_shape(inp_shapes, layout); | |||
| layout.init_contiguous_stride(); | |||
| DeviceTensorND out = | |||
| BlobManager::inst()->alloc_workspace_with_defrag(comp_node, layout); | |||
| auto out = Tensor::make(layout, comp_node); | |||
| if (is_empty) { | |||
| return {Tensor::make(out)}; | |||
| return {out}; | |||
| } | |||
| DnnOprCaller<megdnn::Elemwise> dnn_opr(comp_node); | |||
| @@ -133,12 +133,13 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
| dnn_opr.op->param().mode == Mode::FUSE_MUL_ADD4 || | |||
| (inp_tensornds.size() && | |||
| inp_tensornds[0].layout.dtype.category() == DTypeCategory::QUANTIZED)) { | |||
| opr::Elemwise::perform_dnn(comp_node, out, inp_tensornds, dnn_opr.op); | |||
| opr::Elemwise::perform_dnn( | |||
| comp_node, out->dnn_tensor(), inp_tensornds, dnn_opr.op); | |||
| } else { | |||
| dnn_opr.op->exec(inp_tensornds, out.as_megdnn()); | |||
| dnn_opr.op->exec(inp_tensornds, out->dnn_tensor()); | |||
| } | |||
| return {Tensor::make(out)}; | |||
| return {out}; | |||
| } | |||
| MGB_DEFINE_OPR_CLASS( | |||
| @@ -85,10 +85,9 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
| TensorPtr out = Tensor::make(tlayout, inp->comp_node()); | |||
| megdnn::TensorND in = inp->dnn_tensor(); | |||
| megdnn::TensorND ind = index->dnn_tensor(); | |||
| TensorLayout m_layout( | |||
| {dnn_op.op->get_workspace_in_bytes(layout, index_layout, tlayout)}, | |||
| dtype::Byte()); | |||
| auto dnn_workspace = dnn_op.create_workspace(m_layout); | |||
| size_t sz = dnn_op.op->get_workspace_in_bytes(layout, index_layout, tlayout); | |||
| auto dnn_workspace = dnn_op.create_workspace(sz); | |||
| dnn_op.op->exec(in, ind, out->dnn_tensor(), dnn_workspace); | |||
| return {out}; | |||
| } | |||
| @@ -152,10 +151,9 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
| megdnn::TensorND in = inp->dnn_tensor(); | |||
| megdnn::TensorND ind = index->dnn_tensor(); | |||
| megdnn::TensorND su = sub->dnn_tensor(); | |||
| TensorLayout m_layout( | |||
| {dnn_op.op->get_workspace_in_bytes(layout, index_layout, tlayout)}, | |||
| dtype::Byte()); | |||
| auto dnn_workspace = dnn_op.create_workspace(m_layout); | |||
| size_t sz = dnn_op.op->get_workspace_in_bytes(layout, index_layout, tlayout); | |||
| auto dnn_workspace = dnn_op.create_workspace(sz); | |||
| dnn_op.op->exec(out->dnn_tensor(), ind, su, dnn_workspace); | |||
| return {out}; | |||
| } | |||
| @@ -45,29 +45,25 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
| TensorLayout v_t_1_layout{v_t_1->layout()}; | |||
| TensorLayout lamb_param_layout{lamb_param->layout()}; | |||
| DeviceTensorND m_t = BlobManager::inst()->alloc_workspace_with_defrag( | |||
| m_t_1->comp_node(), m_t_1_layout); | |||
| auto m_t = Tensor::make(m_t_1_layout, m_t_1->comp_node()); | |||
| DeviceTensorND v_t = BlobManager::inst()->alloc_workspace_with_defrag( | |||
| v_t_1->comp_node(), v_t_1_layout); | |||
| auto v_t = Tensor::make(v_t_1_layout, v_t_1->comp_node()); | |||
| DeviceTensorND new_param = BlobManager::inst()->alloc_workspace_with_defrag( | |||
| lamb_param->comp_node(), lamb_param_layout); | |||
| auto new_param = Tensor::make(lamb_param_layout, lamb_param->comp_node()); | |||
| DnnOprCaller<megdnn::LAMBUpdate> caller{lamb_param->comp_node()}; | |||
| TensorLayout m_layout( | |||
| {caller.op->get_workspace_in_bytes( | |||
| m_t_1->layout(), v_t_1->layout(), lamb_param->layout(), | |||
| grad->layout(), m_t.layout(), v_t.layout(), new_param.layout())}, | |||
| dtype::Byte()); | |||
| size_t sz = caller.op->get_workspace_in_bytes( | |||
| m_t_1->layout(), v_t_1->layout(), lamb_param->layout(), grad->layout(), | |||
| m_t->layout(), v_t->layout(), new_param->layout()); | |||
| auto dnn_workspace = caller.create_workspace(m_layout); | |||
| auto dnn_workspace = caller.create_workspace(sz); | |||
| caller.op->param() = op.param(); | |||
| caller.op->exec( | |||
| m_t_1->dev_tensor().as_megdnn(), v_t_1->dev_tensor().as_megdnn(), | |||
| lamb_param->dev_tensor().as_megdnn(), grad->dev_tensor().as_megdnn(), | |||
| m_t.as_megdnn(), v_t.as_megdnn(), new_param.as_megdnn(), dnn_workspace); | |||
| return {Tensor::make(m_t), Tensor::make(v_t), Tensor::make(new_param)}; | |||
| m_t->dnn_tensor(), v_t->dnn_tensor(), new_param->dnn_tensor(), | |||
| dnn_workspace); | |||
| return {m_t, v_t, new_param}; | |||
| } | |||
| OP_TRAIT_REG(LAMBUpdate, LAMBUpdate) | |||
| @@ -77,32 +77,25 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
| megdnn::LayerNorm::deduce_layout_fwd_impl( | |||
| inputs[0]->dnn_tensor().layout, p, oup_layout, mean_layout, rstd_layout); | |||
| DeviceTensorND out_devtensor = | |||
| BlobManager::inst()->alloc_workspace_with_defrag(cn, oup_layout); | |||
| DeviceTensorND mean_devtensor = | |||
| BlobManager::inst()->alloc_workspace_with_defrag(cn, mean_layout); | |||
| DeviceTensorND rstd_devtensor = | |||
| BlobManager::inst()->alloc_workspace_with_defrag(cn, rstd_layout); | |||
| megdnn::Workspace dnn_wk; | |||
| auto out = Tensor::make(oup_layout, cn); | |||
| auto mean = Tensor::make(mean_layout, cn); | |||
| auto rstd = Tensor::make(rstd_layout, cn); | |||
| auto wk_size = caller.op->get_workspace_in_bytes( | |||
| inputs[0]->dnn_tensor().layout, | |||
| p.affine ? inputs[1]->dnn_tensor().layout : TensorLayout(), | |||
| p.affine ? inputs[2]->dnn_tensor().layout : TensorLayout(), oup_layout, | |||
| mean_layout, rstd_layout); | |||
| if (wk_size != 0) { | |||
| TensorLayout w_layout({wk_size}, dtype::Byte()); | |||
| dnn_wk = caller.create_workspace(w_layout); | |||
| } | |||
| auto dnn_wk = caller.create_workspace(wk_size); | |||
| dnn_opr->exec( | |||
| caller.op->exec( | |||
| inputs[0]->dnn_tensor(), | |||
| p.affine ? inputs[1]->dnn_tensor() : megdnn::TensorND(), | |||
| p.affine ? inputs[2]->dnn_tensor() : megdnn::TensorND(), | |||
| out_devtensor.as_megdnn(), mean_devtensor.as_megdnn(), | |||
| rstd_devtensor.as_megdnn(), dnn_wk); | |||
| return {Tensor::make(out_devtensor), Tensor::make(mean_devtensor), | |||
| Tensor::make(rstd_devtensor)}; | |||
| p.affine ? inputs[2]->dnn_tensor() : megdnn::TensorND(), out->dnn_tensor(), | |||
| mean->dnn_tensor(), rstd->dnn_tensor(), dnn_wk); | |||
| return {out, mean, rstd}; | |||
| } | |||
| OP_TRAIT_REG(LayerNorm, LayerNorm) | |||
| @@ -185,12 +185,12 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
| } | |||
| if (dim1 == 0 || dim2 == 0 || layout1[layout1.ndim - 1] == 0) { | |||
| DeviceTensorND out = | |||
| BlobManager::inst()->alloc_workspace_with_defrag(cn, real_dst_layout); | |||
| if (!out.empty()) { | |||
| dev_tensor_memset(out, 0); | |||
| auto out = Tensor::make(real_dst_layout, cn); | |||
| if (!out->empty()) { | |||
| dev_tensor_memset(out->dev_tensor(), 0); | |||
| } | |||
| return {Tensor::make(out)}; | |||
| return {out}; | |||
| } | |||
| TensorLayout layout_a = layout1, layout_b = layout2; | |||
| @@ -232,13 +232,11 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
| size_t sz = setup_algo<megdnn::MatrixMul>( | |||
| {layout_a, layout_b, dst_layout}, dnn_opr.op.get(), 0, false, false, cn, | |||
| matmul.policy(), false, &inp_tensornds); | |||
| DeviceTensorND out = | |||
| BlobManager::inst()->alloc_workspace_with_defrag(cn, dst_layout); | |||
| TensorLayout w_layout({sz}, dtype::Byte()); | |||
| auto dnn_wk = dnn_opr.create_workspace(w_layout); | |||
| auto out = Tensor::make(dst_layout, cn); | |||
| auto dnn_wk = dnn_opr.create_workspace(sz); | |||
| dnn_opr.op->exec(inp_tensornds[0], inp_tensornds[1], out.as_megdnn(), dnn_wk); | |||
| return {Tensor::make(out.sub(SubTensorSpec::make_from_layout(real_dst_layout)))}; | |||
| dnn_opr.op->exec(inp_tensornds[0], inp_tensornds[1], out->dnn_tensor(), dnn_wk); | |||
| return {out->sub(0, real_dst_layout)}; | |||
| } | |||
| SmallVector<VarNode::LayoutConstraintCallback> get_input_layout_constraint( | |||
| @@ -461,12 +459,12 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
| dst_layout.init_contiguous_stride(); | |||
| if (dim1 == 0 || dim2 == 0 || layout1[layout1.ndim - 1] == 0) { | |||
| DeviceTensorND out = | |||
| BlobManager::inst()->alloc_workspace_with_defrag(cn, dst_layout); | |||
| if (!out.empty()) { | |||
| dev_tensor_memset(out, 0); | |||
| auto out = Tensor::make(dst_layout, cn); | |||
| if (!out->empty()) { | |||
| dev_tensor_memset(out->dev_tensor(), 0); | |||
| } | |||
| return {Tensor::make(out)}; | |||
| return {out}; | |||
| } | |||
| SmallVector<megdnn::TensorND> inp_tensornds(2u); | |||
| @@ -479,19 +477,17 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
| {layout1, layout2, dst_layout}, dnn_opr.op.get(), 0, false, false, cn, | |||
| matmul.policy(), false, &inp_tensornds); | |||
| DeviceTensorND out = | |||
| BlobManager::inst()->alloc_workspace_with_defrag(cn, dst_layout); | |||
| auto out = Tensor::make(dst_layout, cn); | |||
| TensorLayout w_layout({sz}, dtype::Byte()); | |||
| auto dnn_wk = dnn_opr.create_workspace(w_layout); | |||
| dnn_opr.op->exec(inp_tensornds[0], inp_tensornds[1], out.as_megdnn(), dnn_wk); | |||
| auto dnn_wk = dnn_opr.create_workspace(sz); | |||
| dnn_opr.op->exec(inp_tensornds[0], inp_tensornds[1], out->dnn_tensor(), dnn_wk); | |||
| shp1[shp1.ndim - 2] = dst_layout[dst_layout.ndim - 2]; | |||
| shp1[shp1.ndim - 1] = dst_layout[dst_layout.ndim - 1]; | |||
| if (maxdim > 3) { | |||
| dst_layout = dst_layout.reshape(shp1); | |||
| } | |||
| return {Tensor::make(out.sub(SubTensorSpec::make_from_layout(dst_layout)))}; | |||
| return {out->sub(0, dst_layout)}; | |||
| } | |||
| SmallVector<VarNode::LayoutConstraintCallback> get_input_layout_constraint( | |||
| @@ -540,27 +536,23 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
| dnn_opr.op->deduce_layout(inp1_tensor.layout, inp2_tensor.layout, oup_layout); | |||
| if (inputs[0]->layout().is_empty() || inputs[1]->layout().is_empty()) { | |||
| DeviceTensorND out = | |||
| BlobManager::inst()->alloc_workspace_with_defrag(comp_node, oup_layout); | |||
| if (!out.empty()) { | |||
| dev_tensor_memset(out, 0); | |||
| auto out = Tensor::make(oup_layout, comp_node); | |||
| if (!out->empty()) { | |||
| dev_tensor_memset(out->dev_tensor(), 0); | |||
| } | |||
| return {Tensor::make(out)}; | |||
| return {out}; | |||
| } | |||
| auto sz = dnn_opr.op->get_workspace_in_bytes( | |||
| inp_tensornds[0].layout, inp_tensornds[1].layout, output_descs[0].layout); | |||
| DeviceTensorND out_devtensor = | |||
| BlobManager::inst()->alloc_workspace_with_defrag(comp_node, oup_layout); | |||
| auto out = Tensor::make(oup_layout, comp_node); | |||
| TensorLayout w_layout({sz}, dtype::Byte()); | |||
| auto dnn_wk = dnn_opr.create_workspace(w_layout); | |||
| auto dnn_wk = dnn_opr.create_workspace(sz); | |||
| dnn_opr.op->exec( | |||
| inp_tensornds[0], inp_tensornds[1], out_devtensor.as_megdnn(), dnn_wk); | |||
| dnn_opr.op->exec(inp_tensornds[0], inp_tensornds[1], out->dnn_tensor(), dnn_wk); | |||
| return {Tensor::make(out_devtensor)}; | |||
| return {out}; | |||
| } | |||
| std::tuple<SmallVector<LogicalTensorDesc>, bool> infer_output_attrs_fallible( | |||
| @@ -36,9 +36,8 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
| megdnn::CheckNonFinite::Param param({op.scale}); | |||
| dnn_opr.op->param() = param; | |||
| size_t sz = dnn_opr.op->get_workspace_in_bytes(srcs, dest->layout()); | |||
| TensorLayout w_layout({sz}, dtype::Byte()); | |||
| auto dnn_wk = dnn_opr.create_workspace(w_layout); | |||
| dnn_opr.op->exec(srcs, dest->dev_tensor().as_megdnn(), dnn_wk); | |||
| auto dnn_wk = dnn_opr.create_workspace(sz); | |||
| dnn_opr.op->exec(srcs, dest->dnn_tensor(), dnn_wk); | |||
| return outputs; | |||
| } | |||
| @@ -66,17 +66,12 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
| {inp_tensornds[0].layout, oup_layout}, dnn_opr.get(), 0, false, false, cn, | |||
| op_def.policy(), false, &inp_tensornds); | |||
| DeviceTensorND out_devtensor = | |||
| BlobManager::inst()->alloc_workspace_with_defrag(cn, oup_layout); | |||
| auto out = Tensor::make(oup_layout, cn); | |||
| megdnn::Workspace dnn_wk; | |||
| if (wk_size) { | |||
| TensorLayout w_layout({wk_size}, dtype::Byte()); | |||
| dnn_wk = caller.create_workspace(w_layout); | |||
| } | |||
| auto dnn_wk = caller.create_workspace(wk_size); | |||
| dnn_opr->exec(inp_tensornds[0], out_devtensor.as_megdnn(), dnn_wk); | |||
| return {Tensor::make(out_devtensor)}; | |||
| caller.op->exec(inp_tensornds[0], out->dnn_tensor(), dnn_wk); | |||
| return {out}; | |||
| } | |||
| OP_TRAIT_REG(Pooling, Pooling) | |||
| @@ -117,20 +117,20 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
| layout.remove_axis_inplace(axis); | |||
| layout.init_contiguous_stride(); | |||
| } | |||
| DeviceTensorND out = | |||
| BlobManager::inst()->alloc_workspace_with_defrag(comp_node, layout); | |||
| auto out = Tensor::make(layout, comp_node); | |||
| std::string err_msg; | |||
| switch (mode) { | |||
| case Reduce::Mode::SUM: | |||
| if (!out.empty()) { | |||
| dev_tensor_memset(out, 0); | |||
| if (!out->empty()) { | |||
| dev_tensor_memset(out->dev_tensor(), 0); | |||
| } | |||
| break; | |||
| case Reduce::Mode::PRODUCT: | |||
| if (!out.empty()) { | |||
| if (!out->empty()) { | |||
| DnnOprCaller<megdnn::Fill> fill_op(comp_node); | |||
| fill_op.op->param() = 1; | |||
| fill_op.op->exec(out.as_megdnn(), {}); | |||
| fill_op.op->exec(out->dnn_tensor(), {}); | |||
| } | |||
| break; | |||
| case Reduce::Mode::MEAN: | |||
| @@ -153,34 +153,29 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
| MegBrainError, "empty input is not allowed for reduce mode: %s", | |||
| err_msg.c_str()); | |||
| } | |||
| return {Tensor::make(out)}; | |||
| return {out}; | |||
| } | |||
| auto dnn_ten = inputs[0]->dnn_tensor(); | |||
| dnn_ten.layout = src; | |||
| inp_tensornds.push_back(dnn_ten); | |||
| megdnn::Workspace dnn_wk; | |||
| auto wk_size = dnn_op.op->get_workspace_in_bytes(src, layout); | |||
| if (wk_size) { | |||
| TensorLayout w_layout({wk_size}, dtype::Byte()); | |||
| dnn_wk = dnn_op.create_workspace(w_layout); | |||
| } | |||
| DeviceTensorND out = | |||
| BlobManager::inst()->alloc_workspace_with_defrag(comp_node, layout); | |||
| dnn_op.op->exec(inp_tensornds[0], out.as_megdnn(), dnn_wk); | |||
| auto dnn_wk = dnn_op.create_workspace(wk_size); | |||
| TensorLayout ori_layout = layout; | |||
| if (!keepdim && src.ndim > 1) { | |||
| auto out_layout = out.layout(); | |||
| out_layout.remove_axis_inplace(axis); | |||
| out_layout.init_contiguous_stride(); | |||
| out.resize(out_layout); | |||
| layout.remove_axis_inplace(axis); | |||
| layout.init_contiguous_stride(); | |||
| } | |||
| return {Tensor::make(out)}; | |||
| auto out = Tensor::make(layout, comp_node); | |||
| auto dnn_out = out->dnn_tensor(); | |||
| dnn_out.layout = ori_layout; | |||
| dnn_op.op->exec(inp_tensornds[0], dnn_out, dnn_wk); | |||
| return {out}; | |||
| } | |||
| std::tuple<SmallVector<LogicalTensorDesc>, bool> infer_output_attrs_fallible( | |||
| @@ -252,9 +252,8 @@ SmallVector<TensorPtr> param_pack_concat_apply_on_physical_tensor( | |||
| HostTensorStorage srcs_storage; | |||
| srcs_storage.reset(comp_node, srcs_size, srcs_ptr); | |||
| caller.op->exec( | |||
| {srcs_raw_ptr, srcs_layout}, inputs.back()->dev_tensor().as_megdnn(), | |||
| output->dev_tensor().as_megdnn(), | |||
| caller.create_workspace({{ws_size}, dtype::Byte()})); | |||
| {srcs_raw_ptr, srcs_layout}, inputs.back()->dnn_tensor(), | |||
| output->dnn_tensor(), caller.create_workspace(ws_size)); | |||
| async_release(HostTensorND{comp_node, srcs_layout}.storage(srcs_storage)); | |||
| return {output}; | |||
| } | |||
| @@ -89,8 +89,8 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
| size_t sz = dnn_opr.op->get_workspace_in_bytes( | |||
| inputs[0]->layout(), inputs[1]->layout(), out_layout, ind_layout); | |||
| TensorLayout w_layout({sz}, dtype::Byte()); | |||
| auto dnn_wk = dnn_opr.create_workspace(w_layout); | |||
| auto dnn_wk = dnn_opr.create_workspace(sz); | |||
| dnn_opr.op->exec( | |||
| inputs[0]->dnn_tensor(), inputs[1]->dnn_tensor(), out.as_megdnn(), | |||
| @@ -566,9 +566,13 @@ DeviceTensorND Tensor::dev_tensor(bool contiguous) { | |||
| return ret; | |||
| } | |||
| bool Tensor::empty() { | |||
| return !m_blob->size(); | |||
| } | |||
| megdnn::TensorND Tensor::dnn_tensor() { | |||
| mgb_assert(m_blob, "uninitialized tensor."); | |||
| return {m_layout, {m_blob->storage().get(), m_offset}}; | |||
| return DnnTensorND{m_layout, m_blob->storage(), m_offset}; | |||
| } | |||
| void Tensor::fetch_value() { | |||
| @@ -10,6 +10,7 @@ | |||
| #include "megbrain/imperative/resource_manager.h" | |||
| #include "megbrain/tensor.h" | |||
| #include "megbrain/utils/metahelper.h" | |||
| #include "megdnn/basic_types.h" | |||
| namespace mgb { | |||
| namespace imperative { | |||
| @@ -87,6 +88,22 @@ using EventPtr = std::unique_ptr<CompNode::Event, EventDeleter>; | |||
| class Tensor; | |||
| using TensorPtr = std::shared_ptr<Tensor>; | |||
| /* | |||
| using DnnTensorND to save the reference count of workspace | |||
| allocted by blobmanager to prevent invalidation | |||
| */ | |||
| struct DnnTensorND : megdnn::TensorND { | |||
| private: | |||
| std::shared_ptr<dt_byte> m_reference; | |||
| public: | |||
| DnnTensorND(TensorLayout& layout_, std::shared_ptr<dt_byte> ref_ptr, size_t offset) | |||
| : megdnn::TensorND(layout_, {ref_ptr.get(), offset}) { | |||
| m_reference = ref_ptr; | |||
| } | |||
| }; | |||
| class Tensor : public NonCopyableObj { | |||
| public: | |||
| Tensor() = default; | |||
| @@ -131,6 +148,8 @@ public: | |||
| void to_contiguous_inplace(); | |||
| bool empty(); | |||
| DeviceTensorND dev_tensor(bool contiguous = true); | |||
| void assign_from_dev_tensor(DeviceTensorND); | |||
| @@ -258,9 +258,9 @@ void Elemwise::perform( | |||
| } | |||
| void Elemwise::perform_dnn( | |||
| CompNode cn, DeviceTensorND& dest, megdnn::TensorNDArray& inputs, | |||
| CompNode cn, const megdnn::TensorND& dest, megdnn::TensorNDArray& inputs, | |||
| intl::UniqPtrWithCN<megdnn::Elemwise>& opr) { | |||
| call_megdnn_opr_exec(cn, inputs, dest.as_megdnn(), opr.get(), nullptr); | |||
| call_megdnn_opr_exec(cn, inputs, dest, opr.get(), nullptr); | |||
| } | |||
| TensorLayoutArray Elemwise::collective_collapse(const TensorLayoutArray& layouts) { | |||
| @@ -78,7 +78,7 @@ public: | |||
| intl::UniqPtrWithCN<megdnn::Elemwise>& opr); | |||
| MGE_WIN_DECLSPEC_FUC static void perform_dnn( | |||
| CompNode cn, DeviceTensorND& dest, megdnn::TensorNDArray& inputs, | |||
| CompNode cn, const megdnn::TensorND& dest, megdnn::TensorNDArray& inputs, | |||
| intl::UniqPtrWithCN<megdnn::Elemwise>& opr); | |||
| using TensorLayoutPtrArray = SmallVector<TensorLayout*>; | |||