You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

graph_rt.cpp 23 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531
  1. /**
  2. * \file imperative/python/src/graph_rt.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "./graph_rt.h"
  12. #include "megbrain/graph/cg.h"
  13. #include "megbrain/serialization/serializer.h"
  14. #include "megbrain/imperative/opr_utility.h"
  15. #include "megbrain/opr/io.h"
  16. #include "megbrain/opr/basic_arith.h"
  17. #include "megbrain/imperative.h"
  18. #include "./helper.h"
  19. #include "megbrain/plugin/profiler.h"
  20. #include "./common.h"
  21. #include "megbrain/gopt/inference.h"
  22. namespace py = pybind11;
  23. using namespace mgb;
  24. using namespace imperative;
  25. namespace ser = mgb::serialization;
  26. using _OptimizeForInferenceOptions = mgb::gopt::OptimizeForInferenceOptions;
  27. using _LayoutTransform = _OptimizeForInferenceOptions::LayoutTransform;
  28. namespace {
  29. class _CompGraphProfilerImpl {
  30. std::shared_ptr<ComputingGraph> m_comp_graph;
  31. GraphProfiler m_profiler;
  32. public:
  33. _CompGraphProfilerImpl(std::shared_ptr<ComputingGraph> cg):
  34. m_comp_graph{cg},
  35. m_profiler{m_comp_graph.get()}
  36. {
  37. }
  38. std::string _get_result() {
  39. auto json = m_profiler.to_json_full(
  40. m_comp_graph->current_comp_seq());
  41. return json->to_string();
  42. }
  43. };
  44. }
  45. #define DEF_READWRITE(name) .def_readwrite(#name, &CURRENT_CLASS::name)
  46. template<typename T>
  47. auto def_rendezvous(py::object m, const char* name) {
  48. return py::class_<Rendezvous<T>, std::shared_ptr<Rendezvous<T>>>(m, name)
  49. .def(py::init([](){return std::make_shared<Rendezvous<T>>();}))
  50. .def("set", [](Rendezvous<T>& r, T v) {r.set(std::move(v));})
  51. .def("get", [](Rendezvous<T>& r) {return r.get();}, py::call_guard<py::gil_scoped_release>())
  52. .def("drop", &Rendezvous<T>::drop)
  53. .def("reset", &Rendezvous<T>::reset);
  54. }
  55. using TensorAttr = LogicalTensorDesc;
  56. using HostNDWithEvent = std::pair<HostTensorND, std::shared_ptr<CompNode::Event>>;
  57. std::vector<mgb::cg::VarNode*> _replace_vars(const std::vector<mgb::cg::VarNode*>& repl_src,
  58. const std::vector<mgb::cg::VarNode*>& repl_dst,
  59. const std::vector<mgb::cg::VarNode*>& vars) {
  60. mgb::ThinHashMap<SymbolVar, SymbolVar> varmap;
  61. for (size_t i = 0; i < repl_src.size(); ++i) {
  62. varmap[SymbolVar(repl_src[i])] = SymbolVar(repl_dst[i]);
  63. }
  64. SymbolVarArray symvars(vars.begin(), vars.end());
  65. auto sym_result = mgb::cg::replace_vars(symvars, varmap);
  66. std::vector<mgb::cg::VarNode*> result;
  67. for (auto symvar : sym_result){
  68. result.push_back(symvar.node());
  69. }
  70. return result;
  71. }
  72. typedef std::vector<mgb::cg::OperatorNodeBase*> OperatorArray;
  73. std::vector<mgb::cg::VarNode*> _replace_oprs(const OperatorArray& repl_src,
  74. const OperatorArray& repl_dst,
  75. const std::vector<mgb::cg::VarNode*>& vars) {
  76. mgb::ThinHashMap<mgb::cg::OperatorNodeBase*, mgb::cg::OperatorNodeBase*>
  77. oprmap;
  78. for (size_t i = 0; i < repl_src.size(); ++i) {
  79. oprmap[repl_src[i]] = repl_dst[i];
  80. }
  81. const SymbolVarArray symvars(vars.begin(), vars.end());
  82. auto sym_result = mgb::cg::replace_oprs(symvars, oprmap);
  83. std::vector<mgb::cg::VarNode*> result;
  84. for (auto symvar : sym_result){
  85. result.push_back(symvar.node());
  86. }
  87. return result;
  88. }
  89. void _set_priority_to_id(const std::vector<mgb::cg::VarNode*>& dest_vars) {
  90. auto on_opr = [](mgb::cg::OperatorNodeBase* opr) {
  91. if (opr->node_prop().attribute().priority == 0) {
  92. opr->node_prop().attribute().priority = opr->id();
  93. }
  94. };
  95. mgb::cg::DepOprIter dep_iter{on_opr};
  96. for (const auto& var : dest_vars) {
  97. dep_iter.add(SymbolVar(var));
  98. }
  99. }
  100. void init_graph_rt(py::module m) {
  101. static const std::unique_ptr<mgb::OprFootprint> _imperative_sm_opr_footprint_ptr{std::make_unique<mgb::OprFootprint>()};
  102. def_rendezvous<DeviceTensorND>(m, "DeviceTensorNDRendezvous");
  103. def_rendezvous<HostNDWithEvent>(m, "HostTensorNDRendezvous");
  104. def_rendezvous<TensorAttr>(m, "TensorAttrRendezvous");
  105. py::class_<cg::VarNode, GraphNodePtr<cg::VarNode>>(m, "VarNode")
  106. .def_property_readonly("owner", [](cg::VarNode* v) {return v->owner_opr();})
  107. .def_property_readonly("graph", [](cg::VarNode* v) {return v->owner_graph();})
  108. .def_property("name", py::overload_cast<>(&VarNode::name, py::const_),
  109. py::overload_cast<std::string>(&VarNode::name))
  110. .def_property_readonly("dtype", [](cg::VarNode* v) {return v->dtype();})
  111. .def_property_readonly("comp_node", [](cg::VarNode* v) {return v->comp_node();})
  112. .def_property_readonly("shape", [](cg::VarNode* v) -> const TensorShape* {
  113. auto&& mgr = v->owner_graph()->static_infer_manager();
  114. auto&& type = mgr.get_infer_type(v);
  115. using InferType = cg::static_infer::InferType;
  116. if (!(type.shape & (InferType::CONST | InferType::RT_STATIC))) {
  117. return nullptr;
  118. }
  119. return mgr.infer_shape_fallible(v);
  120. })
  121. .def_property_readonly("value", [](cg::VarNode* v) -> py::object {
  122. auto&& mgr = v->owner_graph()->static_infer_manager();
  123. auto&& type = mgr.get_infer_type(v);
  124. using InferType = cg::static_infer::InferType;
  125. if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) {
  126. return py::none();
  127. }
  128. auto* val = mgr.infer_value_fallible(v);
  129. if (!val) {
  130. return py::none();
  131. }
  132. return py::cast(*val).attr("numpy")();
  133. })
  134. .def_property_readonly("id",[](cg::VarNode* v){
  135. return (v->id());
  136. })
  137. .def("__repr__", [](cg::VarNode* v) {
  138. return "Var:" + v->name();
  139. });
  140. py::class_<cg::OperatorNodeBase, GraphNodePtr<cg::OperatorNodeBase>>(m, "OperatorNode")
  141. .def_property_readonly("graph", [](cg::OperatorNodeBase* opr) {return opr->owner_graph();})
  142. .def_property("name", py::overload_cast<>(&cg::OperatorNodeBase::name, py::const_),
  143. py::overload_cast<std::string>(&cg::OperatorNodeBase::name))
  144. .def_property_readonly("inputs", [](cg::OperatorNodeBase* opr) {
  145. return to_tuple(opr->input());
  146. })
  147. .def_property_readonly("outputs", [](cg::OperatorNodeBase* opr) {
  148. return to_tuple(opr->usable_output());
  149. })
  150. .def_property_readonly("id",[](cg::OperatorNodeBase* opr){
  151. return opr->id();
  152. })
  153. .def_property_readonly("params",[](cg::OperatorNodeBase* opr){
  154. return _imperative_sm_opr_footprint_ptr->calc_footprint(opr).param->to_string();
  155. })
  156. .def_property_readonly("type",[](cg::OperatorNodeBase* opr){
  157. return opr->dyn_typeinfo()->name;
  158. })
  159. .def("__repr__", [](cg::OperatorNodeBase* opr){
  160. return "Opr:" + opr->name();
  161. });
  162. py::class_<cg::AsyncExecutable>(m, "AsyncExecutable")
  163. .def("execute", &cg::AsyncExecutable::execute, py::call_guard<py::gil_scoped_release>())
  164. .def("wait", &cg::AsyncExecutable::wait, py::call_guard<py::gil_scoped_release>());
  165. auto PyComputingGraph = py::class_<cg::ComputingGraph, std::shared_ptr<cg::ComputingGraph>>(m, "ComputingGraph")
  166. .def(py::init(py::overload_cast<>(&cg::ComputingGraph::make)))
  167. .def("compile", [](cg::ComputingGraph& graph, const std::vector<cg::VarNode*>& dest_vars) {
  168. mgb_assert(!dest_vars.empty());
  169. cg::ComputingGraph::OutputSpec spec;
  170. for (auto v : dest_vars) {
  171. spec.emplace_back(v, nullptr);
  172. }
  173. return graph.compile(spec);
  174. })
  175. .def_property_readonly("options", py::overload_cast<>(&cg::ComputingGraph::options));
  176. py::class_<_CompGraphProfilerImpl, std::shared_ptr<_CompGraphProfilerImpl>>(m, "GraphProfiler")
  177. .def(py::init([](std::shared_ptr<ComputingGraph> graph) {
  178. return std::make_shared<_CompGraphProfilerImpl>(graph);
  179. }))
  180. .def("get", [](_CompGraphProfilerImpl& profiler) { return profiler._get_result(); });
  181. auto GraphOptimizeOptions = py::class_<_OptimizeForInferenceOptions>(m, "GraphOptimizeOptions")
  182. .def(py::init())
  183. .def_readwrite("f16_io_f32_comp", &_OptimizeForInferenceOptions::f16_io_f32_comp)
  184. .def_readwrite("f16_io_comp", &_OptimizeForInferenceOptions::f16_io_comp)
  185. .def_readwrite("fuse_conv_bias_nonlinearity", &_OptimizeForInferenceOptions::fuse_conv_bias_nonlinearity)
  186. .def_readwrite("fuse_conv_bias_with_z", &_OptimizeForInferenceOptions::fuse_conv_bias_with_z)
  187. .def_readwrite("layout_transform", &_OptimizeForInferenceOptions::layout_transform)
  188. ;
  189. py::enum_<_LayoutTransform>(GraphOptimizeOptions, "LayoutTransform")
  190. .value("DEFAULT", _LayoutTransform::DEFAULT)
  191. .value("NCHW4", _LayoutTransform::NCHW4)
  192. .value("NHWCD4", _LayoutTransform::NHWCD4)
  193. .value("NCHW88", _LayoutTransform::NCHW88)
  194. .value("NCHW44", _LayoutTransform::NCHW44)
  195. .value("NCHW44_DOT", _LayoutTransform::NCHW44_DOT)
  196. .value("NCHW32", _LayoutTransform::NCHW32)
  197. .value("CHWN4", _LayoutTransform::CHWN4)
  198. .export_values()
  199. ;
  200. m.def("optimize_for_inference", [](const VarNodeArray& dest_vars, const _OptimizeForInferenceOptions& opt) {
  201. SymbolVarArray symvars(dest_vars.begin(), dest_vars.end());
  202. auto res_symvars = mgb::gopt::optimize_for_inference(symvars, opt);
  203. VarNodeArray vars;
  204. for (auto& si: res_symvars)
  205. vars.push_back(si.node());
  206. return vars;
  207. });
  208. m.def("get_info_for_strip", [](const std::vector<VarNode*>& dest_vars) {
  209. std::unordered_set<const char*> opr_types, dtype_names, elemwise_modes;
  210. auto on_opr = [&](cg::OperatorNodeBase *opr) {
  211. if (ser::GraphDumper::should_remove_in_dump(opr))
  212. return;
  213. opr_types.insert(opr->dyn_typeinfo()->name);
  214. for (auto i : opr->output())
  215. dtype_names.insert(i->dtype().name());
  216. if (opr->same_type<opr::Elemwise>()) {
  217. auto mode = opr->cast_final<opr::Elemwise>().param().mode;
  218. elemwise_modes.insert(
  219. megdnn::Elemwise::ModeTrait::from_mode(mode).name);
  220. }
  221. };
  222. cg::DepOprIter opr_iter{on_opr};
  223. for (auto i : dest_vars)
  224. opr_iter.add(i->owner_opr());
  225. auto to_json = [](const std::unordered_set<const char*> &v) {
  226. std::vector<std::string> vs(v.begin(), v.end());
  227. std::sort(vs.begin(), vs.end());
  228. auto ret = json::Array::make();
  229. for (auto &&i : vs)
  230. ret->add(json::String::make(i));
  231. return ret;
  232. };
  233. return json::Object::make({
  234. {"opr_types", to_json(opr_types)},
  235. {"dtypes", to_json(dtype_names)},
  236. {"elemwise_modes", to_json(elemwise_modes)},
  237. })->to_string();
  238. });
  239. m.def("dump_graph", [](
  240. const std::vector<VarNode*>& dest_vars,
  241. int keep_var_name,
  242. bool keep_param_name,
  243. bool keep_opr_priority,
  244. py::list& stat,
  245. py::list& inputs,
  246. py::list& outputs,
  247. py::list& params
  248. ) {
  249. std::vector<uint8_t> buf;
  250. auto dumper = ser::GraphDumper::make(ser::OutputFile::make_vector_proxy(&buf));
  251. SymbolVarArray symvars(dest_vars.begin(), dest_vars.end());
  252. ser::GraphDumper::DumpConfig config{keep_var_name, keep_param_name,
  253. keep_opr_priority};
  254. auto rst = dumper->dump(symvars, config);
  255. for (auto i : rst.inputs) {
  256. inputs.append(py::cast(i));
  257. }
  258. for (auto i : rst.outputs) {
  259. outputs.append(py::cast(i));
  260. }
  261. for (auto i : rst.params) {
  262. params.append(py::cast(i));
  263. }
  264. auto rst_stat =
  265. std::vector{rst.nr_opr, rst.tot_bytes, rst.tensor_value_bytes,
  266. static_cast<size_t>(rst.content_hash)};
  267. for (auto i : rst_stat) {
  268. stat.append(py::cast(i));
  269. }
  270. return py::bytes(reinterpret_cast<const char*>(&buf[0]), buf.size());
  271. });
  272. m.def("load_graph", [](
  273. std::string& buf,
  274. py::list& output_var_map,
  275. py::list& output_var_list
  276. ) {
  277. auto file = ser::InputFile::make_mem_proxy(buf.c_str(), buf.length());
  278. auto format = ser::GraphLoader::identify_graph_dump_format(*file);
  279. auto loader = ser::GraphLoader::make(std::move(file), format.val());
  280. ser::GraphLoader::LoadConfig config;
  281. auto rst = loader->load(config);
  282. for (auto i : rst.output_var_map) {
  283. output_var_map.append(py::make_tuple(i.first, i.second.node()));
  284. }
  285. for (auto i : rst.output_var_list) {
  286. output_var_list.append(i.node());
  287. }
  288. std::unordered_map<HostTensorND*, const std::string*> tensor2name;
  289. for (const auto& pair : rst.tensor_map) {
  290. tensor2name[pair.second.get()] = &pair.first;
  291. }
  292. auto cb = [&tensor2name, graph=rst.graph](cg::OperatorNodeBase* opr) {
  293. if (!opr->same_type<opr::Host2DeviceCopy>())
  294. return;
  295. auto& h2d = opr->cast_final_safe<opr::Host2DeviceCopy>();
  296. auto it = tensor2name.find(h2d.host_data().get());
  297. mgb_throw_if(it == tensor2name.end(), GraphError,
  298. "unbound Host2DeviceCopy in loaded graph");
  299. h2d.output(0)->name(*it->second);
  300. };
  301. cg::DepOprIter iter{cb};
  302. for (const auto& var : rst.output_var_list) {
  303. iter.add(var);
  304. }
  305. return rst.graph;
  306. });
  307. #define CURRENT_CLASS cg::ComputingGraph::Options
  308. auto PyComputingGraphOptions = py::class_<cg::ComputingGraph::Options>(PyComputingGraph, "Options")
  309. // DEF_READWRITE(opr_attribute)
  310. DEF_READWRITE(seq_opt)
  311. DEF_READWRITE(graph_opt)
  312. DEF_READWRITE(graph_opt_level)
  313. DEF_READWRITE(log_level)
  314. DEF_READWRITE(async_exec_level)
  315. DEF_READWRITE(force_dynamic_alloc)
  316. DEF_READWRITE(var_sanity_check_first_run)
  317. DEF_READWRITE(allocate_static_mem_after_graph_compile)
  318. DEF_READWRITE(fake_next_exec)
  319. DEF_READWRITE(enable_sublinear_memory_opt)
  320. DEF_READWRITE(no_profiling_on_shape_change)
  321. DEF_READWRITE(enable_var_mem_defragment)
  322. DEF_READWRITE(enable_grad_var_static_reshape)
  323. DEF_READWRITE(enable_memory_swap)
  324. DEF_READWRITE(comp_node_seq_record_level)
  325. DEF_READWRITE(no_force_inplace)
  326. DEF_READWRITE(sublinear_mem_config)
  327. // DEF_READWRITE(eager_evaluation)
  328. // DEF_READWRITE(imperative_proxy_graph)
  329. // DEF_READWRITE(extra_vardeps)
  330. // DEF_READWRITE(user_data)
  331. ;
  332. #undef CURRENT_CLASS
  333. #define CURRENT_CLASS cg::ComputingGraph::Options::SeqOpt
  334. py::class_<cg::ComputingGraph::Options::SeqOpt>(PyComputingGraphOptions, "SeqOpt")
  335. DEF_READWRITE(enable_mem_plan_opt)
  336. DEF_READWRITE(enable_mem_reuse_alloc)
  337. DEF_READWRITE(enable_seq_comp_node_opt);
  338. #undef CURRENT_CLASS
  339. #define CURRENT_CLASS cg::ComputingGraph::Options::GraphOpt
  340. py::class_<cg::ComputingGraph::Options::GraphOpt>(PyComputingGraphOptions, "GraphOpt")
  341. DEF_READWRITE(jit)
  342. DEF_READWRITE(tensorrt);
  343. #undef CURRENT_CLASS
  344. #define CURRENT_CLASS cg::ComputingGraph::Options::SublinearMemConfig
  345. py::class_<cg::ComputingGraph::Options::SublinearMemConfig>(PyComputingGraphOptions, "SublinearMemConfig")
  346. DEF_READWRITE(thresh_nr_try)
  347. DEF_READWRITE(genetic_nr_iter)
  348. DEF_READWRITE(genetic_pool_size)
  349. DEF_READWRITE(lb_memory)
  350. DEF_READWRITE(num_worker);
  351. #undef CURRENT_CLASS
  352. auto common = rel_import("common", m, 1);
  353. common.def("invoke_op", [](const OpDef& def, const std::vector<cg::VarNode*> inputs, cg::ComputingGraph* graph) {
  354. cg::VarNodeArray vinputs(inputs.begin(), inputs.end());
  355. auto opr = OpDef::apply_on_var_node(def, vinputs);
  356. auto outputs = opr->usable_output();
  357. return to_tuple(outputs);
  358. },
  359. py::arg(), py::arg(), py::arg("graph") = py::none());
  360. auto input_callback = [](auto callback,
  361. const CompNode& comp_node,
  362. const DType& dtype,
  363. const TensorShape& shape,
  364. const std::vector<cg::VarNode*>& inputs,
  365. cg::ComputingGraph* graph) {
  366. if (!graph) {
  367. graph = inputs[0]->owner_graph();
  368. }
  369. SymbolVarArray sinputs;
  370. for (auto i : inputs) {
  371. sinputs.emplace_back(i);
  372. }
  373. static_assert(!std::is_reference<decltype(callback)>::value);
  374. auto soutputs = opr::InputCallback::make(*graph, std::move(callback), comp_node, dtype, shape, sinputs);
  375. std::vector<VarNode*> outputs;
  376. outputs.reserve(soutputs.size());
  377. for (auto i : soutputs) {
  378. outputs.push_back(i.node());
  379. }
  380. return outputs;
  381. };
  382. m.def("make_shared", [](cg::ComputingGraph* graph, const DeviceTensorND& data) {
  383. return opr::SharedDeviceTensor::make(*graph, std::make_shared<DeviceTensorND>(data)).node();
  384. });
  385. m.def("make_const", [](cg::ComputingGraph* graph, py::array data, CompNode cn, DType dtype) {
  386. if (!cn.valid()) {
  387. cn = CompNode::load(get_default_device());
  388. }
  389. auto hv = npy::np2tensor(data.ptr(), npy::Meth::borrow(cn), dtype);
  390. return opr::ImmutableTensor::make(*graph, hv, OperatorNodeConfig(cn)).node();
  391. });
  392. m.def("make_h2d", [](cg::ComputingGraph& graph, CompNode cn, DType dtype, TensorShape shape, std::optional<std::string> name) {
  393. if (!cn.valid()) {
  394. throw py::type_error("device must be valid");
  395. }
  396. if (!dtype.valid()) {
  397. throw py::type_error("dtype must be valid");
  398. }
  399. OperatorNodeConfig config;
  400. if (name) {
  401. config.name(*name);
  402. }
  403. return opr::Host2DeviceCopy::make(graph, std::make_shared<HostTensorND>(cn, shape, dtype), config).node();
  404. }, py::arg(), py::arg(), py::arg(), py::arg() = py::none(), py::arg() = py::none());
  405. m.def("_replace_vars", &_replace_vars,py::arg(),py::arg(),py::arg());
  406. m.def("_replace_oprs", &_replace_oprs,py::arg(),py::arg(),py::arg());
  407. m.def("_set_priority_to_id",&_set_priority_to_id,py::arg());
  408. m.def("input_callback", [input_callback](std::function<DeviceTensorND(void)> callback,
  409. const CompNode& comp_node,
  410. const DType& dtype,
  411. const TensorShape& shape,
  412. const std::vector<cg::VarNode*>& inputs,
  413. cg::ComputingGraph* graph) {
  414. return input_callback([f=std::move(callback)](){py::gil_scoped_acquire _; return f();}, comp_node, dtype, shape, inputs, graph);
  415. },
  416. py::arg(), py::arg(), py::arg(), py::arg() = py::none(), py::arg() = py::tuple(), py::arg("graph") = py::none());
  417. m.def("input_callback", [input_callback](std::shared_ptr<Rendezvous<DeviceTensorND>> p,
  418. const CompNode& comp_node,
  419. const DType& dtype,
  420. const TensorShape& shape,
  421. const std::vector<cg::VarNode*>& inputs,
  422. cg::ComputingGraph* graph) {
  423. auto f = [p]() -> DeviceTensorND {
  424. return p->get();
  425. };
  426. return input_callback(std::move(f), comp_node, dtype, shape, inputs, graph);
  427. },
  428. py::arg(), py::arg(), py::arg(), py::arg() = py::none(), py::arg() = py::tuple(), py::arg("graph") = py::none());
  429. auto output_callback = [](auto callback, const std::vector<cg::VarNode*>& inputs, bool borrow = false, bool prefer_host_value = false) {
  430. SymbolVarArray sinputs;
  431. for (auto i : inputs) {
  432. sinputs.emplace_back(i);
  433. }
  434. static_assert(!std::is_reference<decltype(callback)>::value);
  435. opr::OutputCallback::Param param{std::move(callback), borrow, prefer_host_value};
  436. auto output = opr::OutputCallback::make(std::move(param), sinputs);
  437. return output.node();
  438. };
  439. m.def("output_callback", [output_callback](std::function<void(DeviceTensorND)> callback, std::vector<cg::VarNode*> inputs) {
  440. auto f = [f=std::move(callback)](DeviceTensorND dv) {
  441. auto task = [f=std::move(f), dv=std::move(dv)]() {
  442. f(dv);
  443. };
  444. py_task_q.add_task(std::move(task));
  445. };
  446. return output_callback(std::move(f), std::move(inputs));
  447. });
  448. m.def("output_callback", [output_callback](std::shared_ptr<Rendezvous<DeviceTensorND>> p, std::vector<cg::VarNode*> inputs) {
  449. auto f = [p](DeviceTensorND dv) {
  450. p->set(std::move(dv));
  451. };
  452. return output_callback(std::move(f), std::move(inputs));
  453. });
  454. m.def("value_output_callback", [output_callback](std::shared_ptr<Rendezvous<HostNDWithEvent>> p, std::vector<cg::VarNode*> inputs) {
  455. auto f = [p](DeviceTensorND dv) {
  456. HostNDWithEvent hv_with_event;
  457. hv_with_event.first.copy_from(dv);
  458. hv_with_event.second = dv.comp_node().create_event();
  459. hv_with_event.second->record();
  460. p->set(std::move(hv_with_event));
  461. };
  462. return output_callback(std::move(f), std::move(inputs), true, true);
  463. });
  464. m.def("attr_output_callback", [output_callback](std::shared_ptr<Rendezvous<TensorAttr>> p, std::vector<cg::VarNode*> inputs) {
  465. auto f = [p](DeviceTensorND dv) {
  466. p->set(TensorAttr{TensorLayout{dv.shape(), dv.dtype()}, dv.comp_node()});
  467. };
  468. return output_callback(std::move(f), std::move(inputs), true);
  469. });
  470. }

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台