| @@ -14,6 +14,7 @@ from concurrent.futures import Future, ThreadPoolExecutor | |||
| import numpy as np | |||
| from .. import _imperative_rt | |||
| from .._imperative_rt import GraphOptimizeOptions | |||
| from .._imperative_rt.ops import BackwardGraph | |||
| from .._wrap import device as as_device | |||
| from ..ops.builtin import OpDef | |||
| @@ -83,6 +84,84 @@ class Graph(_imperative_rt.ComputingGraph): | |||
| return self._wrap(_imperative_rt.make_h2d(self, device, dtype, shape, name)) | |||
| def optimize_for_inference(dest_vars, **kwargs): | |||
| r"""Applies optimize_for_inference pass for computing graph. | |||
| :param dest_vars: list of output vars in the computing graph | |||
| :Keyword Arguments: | |||
| * enable_io16xc32 -- | |||
| whether to use float16 for I/O between oprs and use | |||
| float32 as internal computation precision. Note the output var would be | |||
| changed to float16. | |||
| * enable_ioc16 -- | |||
| whether to use float16 for both I/O and computation | |||
| precision. | |||
| * enable_hwcd4 -- | |||
| whether to use NHWCD4 data layout. This is faster on some | |||
| OpenCL backend. | |||
| * enable_nchw88 -- | |||
| whether to use NCHW88 data layout, currently | |||
| used in X86 AVX backend. | |||
| * enable_nchw44 -- | |||
| whether to use NCHW44 data layout, currently | |||
| used in arm backend. | |||
| * enable_nchw44_dot -- | |||
| whether to use NCHW44_dot data layout, currently | |||
| used in armv8.2+dotprod backend. | |||
| * enable_nchw4 -- | |||
| whether to use NCHW4 data layout, currently | |||
| used in nvidia backend(based on cudnn). | |||
| * enable_nchw32 -- | |||
| whether to use NCHW32 data layout, currently | |||
| used in nvidia backend with tensorcore(based on cudnn). | |||
| * enable_chwn4 -- | |||
| whether to use CHWN4 data layout, currently | |||
| used in nvidia backend with tensorcore. | |||
| * enable_fuse_conv_bias_nonlinearity: whether to fuse conv+bias+nonlinearty | |||
| into one opr. | |||
| * enable_fuse_conv_bias_with_z: whether to fuse conv_bias with z | |||
| input for inference on nvidia backend(this optimization pass will | |||
| result in mismatch of the precision of output of training and | |||
| inference) | |||
| """ | |||
| inference_options = GraphOptimizeOptions() | |||
| if optimize_for_inference: | |||
| inference_optimize_layout_transform_map = { | |||
| "enable_hwcd4": GraphOptimizeOptions.LayoutTransform.NHWCD4, | |||
| "enable_nchw4": GraphOptimizeOptions.LayoutTransform.NCHW4, | |||
| "enable_nchw88": GraphOptimizeOptions.LayoutTransform.NCHW88, | |||
| "enable_nchw32": GraphOptimizeOptions.LayoutTransform.NCHW32, | |||
| "enable_nchw44": GraphOptimizeOptions.LayoutTransform.NCHW44, | |||
| "enable_nchw44_dot": GraphOptimizeOptions.LayoutTransform.NCHW44_DOT, | |||
| "enable_chwn4": GraphOptimizeOptions.LayoutTransform.CHWN4, | |||
| } | |||
| for k, v in inference_optimize_layout_transform_map.items(): | |||
| if kwargs.pop(k, False): | |||
| inference_options.layout_transform = v | |||
| if kwargs.pop("enable_io16xc32", False): | |||
| inference_options.f16_io_f32_comp = True | |||
| if kwargs.pop("enable_ioc16", False): | |||
| inference_options.f16_io_comp = True | |||
| if kwargs.pop("enable_fuse_conv_bias_nonlinearity", False): | |||
| inference_options.fuse_conv_bias_nonlinearity = True | |||
| if kwargs.pop("enable_fuse_conv_bias_with_z", False): | |||
| inference_options.fuse_conv_bias_with_z = True | |||
| if kwargs: | |||
| raise ValueError("unknown options: %s" % list(kwargs)) | |||
| res_vars = _imperative_rt.optimize_for_inference( | |||
| [i._node for i in dest_vars], inference_options | |||
| ) | |||
| return [VarNode(i) for i in res_vars] | |||
| def dump(*args): | |||
| return _imperative_rt.dump_graph([i._node for i in args]) | |||
| @@ -11,6 +11,7 @@ import numpy as np | |||
| from ..core._imperative_rt import GraphProfiler | |||
| from ..core._imperative_rt.ops import OprAttr | |||
| from ..core._trace_option import set_tensor_shape | |||
| from ..core.ops.special import Const | |||
| from ..core.tensor import megbrain_graph as G | |||
| from ..core.tensor.core import OpBase, TensorBase, TensorWrapperBase, apply | |||
| @@ -76,6 +77,22 @@ class TensorInfo: | |||
| class trace: | |||
| """ | |||
| Wraps a callable and provide: | |||
| * tracing via :meth:`.trace` and :meth:`.dump` | |||
| * accelerated evalutaion via :meth:`.__call__` | |||
| :param function: the function will be traced. | |||
| :param symbolic: whether to apply symbolic execution for tracing. Default: False | |||
| :param capture_as_const: capture global vars or closures as const value. Default: False | |||
| :param sublinear_memory_config: configuration for sublinear memory optimization. | |||
| If not None, it enables sublinear memory optimization with given setting. | |||
| :param profiling: whether to profile compiled trace. Default: False | |||
| :param opt_level: optimization level for compiling trace. | |||
| :param symbolic_shape: whether to use symbolic shape for tracing. Default: True | |||
| """ | |||
| def __new__(cls, *args, **kwargs): | |||
| if not args: | |||
| return functools.partial(cls, **kwargs) | |||
| @@ -88,6 +105,8 @@ class trace: | |||
| capture_as_const=False, | |||
| sublinear_memory_config: SublinearMemoryConfig = None, | |||
| profiling: bool = False, | |||
| opt_level: int = None, | |||
| tensor_shape: bool = True, | |||
| ): | |||
| self.__wrapped__ = function | |||
| self._symbolic = symbolic | |||
| @@ -95,6 +114,8 @@ class trace: | |||
| self._sublinear_memory_config = sublinear_memory_config | |||
| self._profiling = profiling | |||
| self._profiler = None | |||
| self._graph_opt_level = opt_level | |||
| self._tensor_shape = tensor_shape | |||
| self._untraced = True | |||
| self._tinfo = [] # handle -> TensorInfo | |||
| @@ -112,6 +133,8 @@ class trace: | |||
| self._output_bindings = None | |||
| self._output_names = None | |||
| set_tensor_shape(self._tensor_shape) | |||
| def _new_handle(self): | |||
| handle = len(self._tinfo) | |||
| info = TensorInfo() | |||
| @@ -307,6 +330,9 @@ class trace: | |||
| def _apply_graph_options(self, graph): | |||
| graph.options.seq_opt.enable_seq_comp_node_opt = False | |||
| # graph opt level | |||
| if self._graph_opt_level is not None: | |||
| graph.options.graph_opt_level = self._graph_opt_level | |||
| # sublinear | |||
| if self._sublinear_memory_config is not None: | |||
| graph.options.enable_sublinear_memory_opt = True | |||
| @@ -320,6 +346,7 @@ class trace: | |||
| ) | |||
| sublinear_config.thresh_nr_try = self._sublinear_memory_config.thresh_nr_try | |||
| sublinear_config.num_worker = self._sublinear_memory_config.num_worker | |||
| # profile | |||
| if self._profiling: | |||
| self._profiler = GraphProfiler(graph) | |||
| @@ -416,7 +443,55 @@ class trace: | |||
| self._process_outputs(outputs) | |||
| return outputs | |||
| def dump(self, file, *, arg_names=None, output_names=None): | |||
| def dump(self, file, *, arg_names=None, output_names=None, append=False, **kwargs): | |||
| r"""Serializes trace to file system. | |||
| :param file: output file, could be file object or filename. | |||
| :param arg_names: names of the input tensors in the traced function. | |||
| :param output_names: names of the output tensors in the traced function, | |||
| use the default name if not specified. | |||
| :param append: whether output is appended to ``file``. | |||
| Only works when ``file`` is str. | |||
| :Keyword Arguments: | |||
| * enable_io16xc32 -- | |||
| whether to use float16 for I/O between oprs and use | |||
| float32 as internal computation precision. Note the output var would be | |||
| changed to float16. | |||
| * enable_ioc16 -- | |||
| whether to use float16 for both I/O and computation | |||
| precision. | |||
| * enable_hwcd4 -- | |||
| whether to use NHWCD4 data layout. This is faster on some | |||
| OpenCL backend. | |||
| * enable_nchw88 -- | |||
| whether to use NCHW88 data layout, currently | |||
| used in X86 AVX backend. | |||
| * enable_nchw44 -- | |||
| whether to use NCHW44 data layout, currently | |||
| used in arm backend. | |||
| * enable_nchw44_dot -- | |||
| whether to use NCHW44_dot data layout, currently | |||
| used in armv8.2+dotprod backend. | |||
| * enable_nchw4 -- | |||
| whether to use NCHW4 data layout, currently | |||
| used in nvidia backend(based on cudnn). | |||
| * enable_nchw32 -- | |||
| whether to use NCHW32 data layout, currently | |||
| used in nvidia backend with tensorcore(based on cudnn). | |||
| * enable_chwn4 -- | |||
| whether to use CHWN4 data layout, currently | |||
| used in nvidia backend with tensorcore. | |||
| * enable_fuse_conv_bias_nonlinearity: whether to fuse conv+bias+nonlinearty | |||
| into one opr. | |||
| * enable_fuse_conv_bias_with_z: whether to fuse conv_bias with z | |||
| input for inference on nvidia backend(this optimization pass will | |||
| result in mismatch of the precision of output of training and | |||
| inference) | |||
| """ | |||
| if not self._capture_as_const: | |||
| raise ValueError( | |||
| "you must specify capture_as_const=True at __init__ to use dump" | |||
| @@ -482,8 +557,11 @@ class trace: | |||
| v.name = output_names[i] | |||
| dest_vars.append(v) | |||
| dest_vars = G.optimize_for_inference(dest_vars, **kwargs) | |||
| if isinstance(file, str): | |||
| file = open(file, "wb") | |||
| permission = "wb" if append == False else "ab" | |||
| file = open(file, permission) | |||
| file.write(G.dump(*dest_vars)) | |||
| def _process_inputs(self, *args, **kwargs): | |||
| @@ -20,12 +20,17 @@ | |||
| #include "./helper.h" | |||
| #include "megbrain/plugin/profiler.h" | |||
| #include "./common.h" | |||
| #include "megbrain/gopt/inference.h" | |||
| namespace py = pybind11; | |||
| using namespace mgb; | |||
| using namespace imperative; | |||
| using _OptimizeForInferenceOptions = mgb::gopt::OptimizeForInferenceOptions; | |||
| using _LayoutTransform = _OptimizeForInferenceOptions::LayoutTransform; | |||
| namespace { | |||
| class _CompGraphProfilerImpl { | |||
| std::shared_ptr<ComputingGraph> m_comp_graph; | |||
| @@ -138,6 +143,37 @@ void init_graph_rt(py::module m) { | |||
| return py::bytes(reinterpret_cast<const char*>(&buf[0]), buf.size()); | |||
| }); | |||
| auto GraphOptimizeOptions = py::class_<_OptimizeForInferenceOptions>(m, "GraphOptimizeOptions") | |||
| .def(py::init()) | |||
| .def_readwrite("f16_io_f32_comp", &_OptimizeForInferenceOptions::f16_io_f32_comp) | |||
| .def_readwrite("f16_io_comp", &_OptimizeForInferenceOptions::f16_io_comp) | |||
| .def_readwrite("fuse_conv_bias_nonlinearity", &_OptimizeForInferenceOptions::fuse_conv_bias_nonlinearity) | |||
| .def_readwrite("fuse_conv_bias_with_z", &_OptimizeForInferenceOptions::fuse_conv_bias_with_z) | |||
| .def_readwrite("layout_transform", &_OptimizeForInferenceOptions::layout_transform) | |||
| ; | |||
| py::enum_<_LayoutTransform>(GraphOptimizeOptions, "LayoutTransform") | |||
| .value("DEFAULT", _LayoutTransform::DEFAULT) | |||
| .value("NCHW4", _LayoutTransform::NCHW4) | |||
| .value("NHWCD4", _LayoutTransform::NHWCD4) | |||
| .value("NCHW88", _LayoutTransform::NCHW88) | |||
| .value("NCHW44", _LayoutTransform::NCHW44) | |||
| .value("NCHW44_DOT", _LayoutTransform::NCHW44_DOT) | |||
| .value("NCHW32", _LayoutTransform::NCHW32) | |||
| .value("CHWN4", _LayoutTransform::CHWN4) | |||
| .export_values() | |||
| ; | |||
| m.def("optimize_for_inference", [](const VarNodeArray& dest_vars, const _OptimizeForInferenceOptions& opt) { | |||
| SymbolVarArray symvars(dest_vars.begin(), dest_vars.end()); | |||
| auto res_symvars = mgb::gopt::optimize_for_inference(symvars, opt); | |||
| VarNodeArray vars; | |||
| for (auto& si: res_symvars) | |||
| vars.push_back(si.node()); | |||
| return vars; | |||
| }); | |||
| #define CURRENT_CLASS cg::ComputingGraph::Options | |||
| auto PyComputingGraphOptions = py::class_<cg::ComputingGraph::Options>(PyComputingGraph, "Options") | |||
| @@ -1,29 +0,0 @@ | |||
| # -*- coding: utf-8 -*- | |||
| # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| # | |||
| # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, | |||
| # software distributed under the License is distributed on an | |||
| # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| import pytest | |||
| from megengine.core import Tensor | |||
| # from megengine.core.interpreter.hints import function | |||
| @pytest.mark.skip(reason="under rewrite") | |||
| def test_1(): | |||
| @function | |||
| def f(x, p): | |||
| x = x + 1 | |||
| if p: | |||
| return x * x | |||
| return x * 2 | |||
| x = Tensor(0) | |||
| for _ in range(5): | |||
| assert f(x, 0).numpy() == 2 | |||
| assert f(x, 1).numpy() == 1 | |||
| @@ -1,10 +1,23 @@ | |||
| # -*- coding: utf-8 -*- | |||
| # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| # | |||
| # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, | |||
| # software distributed under the License is distributed on an | |||
| # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| import io | |||
| from tempfile import mkstemp | |||
| import numpy as np | |||
| import pytest | |||
| from megengine import tensor | |||
| from megengine.core.ops import builtin as ops | |||
| from megengine.core.tensor import megbrain_graph as G | |||
| from megengine.core.tensor.core import apply | |||
| from megengine.core.tensor.raw_tensor import as_raw_tensor | |||
| from megengine.functional import exp, log | |||
| from megengine.jit import exclude_from_trace, trace | |||
| @@ -101,3 +114,85 @@ def test_trace_profiler(): | |||
| out = f.get_profile() | |||
| assert out.get("profiler") | |||
| @pytest.mark.skip(reason="eq_to_unit failed in inplace.cpp") | |||
| def test_goptions_div_zero(): | |||
| @trace(symbolic=True, opt_level=0) | |||
| def f(x): | |||
| return x / x | |||
| @trace(symbolic=True, opt_level=1) | |||
| def g(x): | |||
| return x / x | |||
| out = f(tensor(0.0)) | |||
| if out == out: | |||
| raise ValueError("actual result should be nan") | |||
| out = g(tensor(0.0)) | |||
| if out != out: | |||
| raise ValueError("actual result should be 1") | |||
| @pytest.mark.skip(reason="cast to Elemwise failed in inplace.cpp") | |||
| def test_goptions_log_exp(): | |||
| @trace(symbolic=True, opt_level=0, capture_as_const=True) | |||
| def f(x): | |||
| return log(exp(x)) | |||
| @trace(symbolic=True, opt_level=1, capture_as_const=True) | |||
| def g(x): | |||
| return log(exp(x)) | |||
| f(tensor(1.0)) | |||
| _, out = mkstemp() | |||
| f.dump(out) | |||
| *_, outputs = G.load_comp_graph_from_file(out) | |||
| oprs_1 = cgtools.get_oprs_seq(outputs) | |||
| g(tensor(1.0)) | |||
| g.dump(out) | |||
| *_, outputs = G.load_comp_graph_from_file(out) | |||
| oprs_2 = cgtools.get_oprs_seq(outputs) | |||
| assert len(oprs_1) - len(oprs_2) == 2 | |||
| @pytest.mark.skip(reason="need cgtools to check final oprs") | |||
| def test_goptions_log_sum_exp(): | |||
| @trace(symbolic=True, opt_level=0, capture_as_const=True) | |||
| def f(x, y): | |||
| return log(exp(x) + exp(y)) | |||
| @trace(symbolic=True, opt_level=1, capture_as_const=True) | |||
| def g(x, y): | |||
| return log(exp(x) + exp(y)) | |||
| f(tensor(1.0), tensor(2.0)) | |||
| _, out = mkstemp() | |||
| f.dump(out) | |||
| *_, outputs = G.load_comp_graph_from_file(out) | |||
| oprs_1 = cgtools.get_oprs_seq(outputs) | |||
| g(tensor(1.0), tensor(2.0)) | |||
| g.dump(out) | |||
| *_, outputs = G.load_comp_graph_from_file(out) | |||
| oprs_2 = cgtools.get_oprs_seq(outputs) | |||
| assert len(oprs_1) - len(oprs_2) == 2 | |||
| @pytest.mark.skip(reason="need cgtools to check computing input dtype") | |||
| def test_optimize_for_inference(): | |||
| @trace(symbolic=True, capture_as_const=True) | |||
| def f(x): | |||
| return exp(x) | |||
| _, out = mkstemp() | |||
| f(tensor(5.0)) | |||
| f.dump(out, optimize_for_inference=True, optimize_options={"enable_io16xc32": True}) | |||
| res = G.load_comp_graph_from_file(out) | |||
| computing_input = res.output_vars_list[0].owner.inputs[0] | |||
| assert computing_input.dtype == np.float16 | |||