GitOrigin-RevId: fbc0d51c2b
tags/v1.0.0-rc1
| @@ -130,32 +130,31 @@ def optimize_for_inference(dest_vars, **kwargs): | |||
| inference) | |||
| """ | |||
| inference_options = GraphOptimizeOptions() | |||
| if optimize_for_inference: | |||
| inference_optimize_layout_transform_map = { | |||
| "enable_hwcd4": GraphOptimizeOptions.LayoutTransform.NHWCD4, | |||
| "enable_nchw4": GraphOptimizeOptions.LayoutTransform.NCHW4, | |||
| "enable_nchw88": GraphOptimizeOptions.LayoutTransform.NCHW88, | |||
| "enable_nchw32": GraphOptimizeOptions.LayoutTransform.NCHW32, | |||
| "enable_nchw44": GraphOptimizeOptions.LayoutTransform.NCHW44, | |||
| "enable_nchw44_dot": GraphOptimizeOptions.LayoutTransform.NCHW44_DOT, | |||
| "enable_chwn4": GraphOptimizeOptions.LayoutTransform.CHWN4, | |||
| } | |||
| for k, v in inference_optimize_layout_transform_map.items(): | |||
| if kwargs.pop(k, False): | |||
| inference_options.layout_transform = v | |||
| if kwargs.pop("enable_io16xc32", False): | |||
| inference_options.f16_io_f32_comp = True | |||
| if kwargs.pop("enable_ioc16", False): | |||
| inference_options.f16_io_comp = True | |||
| if kwargs.pop("enable_fuse_conv_bias_nonlinearity", False): | |||
| inference_options.fuse_conv_bias_nonlinearity = True | |||
| if kwargs.pop("enable_fuse_conv_bias_with_z", False): | |||
| inference_options.fuse_conv_bias_with_z = True | |||
| if kwargs: | |||
| raise ValueError("unknown options: %s" % list(kwargs)) | |||
| inference_optimize_layout_transform_map = { | |||
| "enable_hwcd4": GraphOptimizeOptions.LayoutTransform.NHWCD4, | |||
| "enable_nchw4": GraphOptimizeOptions.LayoutTransform.NCHW4, | |||
| "enable_nchw88": GraphOptimizeOptions.LayoutTransform.NCHW88, | |||
| "enable_nchw32": GraphOptimizeOptions.LayoutTransform.NCHW32, | |||
| "enable_nchw44": GraphOptimizeOptions.LayoutTransform.NCHW44, | |||
| "enable_nchw44_dot": GraphOptimizeOptions.LayoutTransform.NCHW44_DOT, | |||
| "enable_chwn4": GraphOptimizeOptions.LayoutTransform.CHWN4, | |||
| } | |||
| for k, v in inference_optimize_layout_transform_map.items(): | |||
| if kwargs.pop(k, False): | |||
| inference_options.layout_transform = v | |||
| if kwargs.pop("enable_io16xc32", False): | |||
| inference_options.f16_io_f32_comp = True | |||
| if kwargs.pop("enable_ioc16", False): | |||
| inference_options.f16_io_comp = True | |||
| if kwargs.pop("enable_fuse_conv_bias_nonlinearity", False): | |||
| inference_options.fuse_conv_bias_nonlinearity = True | |||
| if kwargs.pop("enable_fuse_conv_bias_with_z", False): | |||
| inference_options.fuse_conv_bias_with_z = True | |||
| if kwargs: | |||
| raise ValueError("unknown options: %s" % list(kwargs)) | |||
| res_vars = _imperative_rt.optimize_for_inference( | |||
| [i._node for i in dest_vars], inference_options | |||
| @@ -458,7 +458,16 @@ class trace: | |||
| self._process_outputs(outputs) | |||
| return outputs | |||
| def dump(self, file, *, arg_names=None, output_names=None, append=False, **kwargs): | |||
| def dump( | |||
| self, | |||
| file, | |||
| *, | |||
| arg_names=None, | |||
| output_names=None, | |||
| append=False, | |||
| optimize_for_inference=True, | |||
| **kwargs | |||
| ): | |||
| r"""Serializes trace to file system. | |||
| :param file: output file, could be file object or filename. | |||
| @@ -467,6 +476,8 @@ class trace: | |||
| use the default name if not specified. | |||
| :param append: whether output is appended to ``file``. | |||
| Only works when ``file`` is str. | |||
| :param optimize_for_inference: enbale optmizations, | |||
| will skip all optimize options if this is False. Default: True | |||
| :Keyword Arguments: | |||
| @@ -572,7 +583,8 @@ class trace: | |||
| v.name = output_names[i] | |||
| dest_vars.append(v) | |||
| dest_vars = G.optimize_for_inference(dest_vars, **kwargs) | |||
| if optimize_for_inference: | |||
| dest_vars = G.optimize_for_inference(dest_vars, **kwargs) | |||
| if isinstance(file, str): | |||
| permission = "wb" if append == False else "ab" | |||
| @@ -155,6 +155,9 @@ void init_graph_rt(py::module m) { | |||
| }) | |||
| .def_property_readonly("id",[](cg::VarNode* v){ | |||
| return (v->id()); | |||
| }) | |||
| .def("__repr__", [](cg::VarNode* v) { | |||
| return "Var:" + v->name(); | |||
| }); | |||
| py::class_<cg::OperatorNodeBase, GraphNodePtr<cg::OperatorNodeBase>>(m, "OperatorNode") | |||
| @@ -175,6 +178,9 @@ void init_graph_rt(py::module m) { | |||
| }) | |||
| .def_property_readonly("type",[](cg::OperatorNodeBase* opr){ | |||
| return opr->dyn_typeinfo()->name; | |||
| }) | |||
| .def("__repr__", [](cg::OperatorNodeBase* opr){ | |||
| return "Opr:" + opr->name(); | |||
| }); | |||
| @@ -67,7 +67,6 @@ def test_replace_oprs(): | |||
| np.testing.assert_equal(res, np.array([5.0 * 5.0 * 1.25])) | |||
| @pytest.mark.skip(reason="Please check opr index") | |||
| def test_graph_traversal(): | |||
| net = M.Conv2d(3, 32, 3) | |||
| @@ -77,11 +76,11 @@ def test_graph_traversal(): | |||
| return x | |||
| data = np.random.random([1, 3, 224, 224]).astype(np.float32) | |||
| for i in range(3): | |||
| for _ in range(3): | |||
| fun(megengine.tensor(data)) | |||
| file = io.BytesIO() | |||
| fun.dump(file) | |||
| fun.dump(file, optimize_for_inference=False) | |||
| file.seek(0) | |||
| cg, _, outputs = mgb_graph.load_graph(file) | |||
| @@ -13,7 +13,6 @@ import numpy as np | |||
| import pytest | |||
| import megengine | |||
| import megengine.core.tensor.megbrain_graph as G | |||
| import megengine.module as M | |||
| from megengine import cgtools, tensor | |||
| from megengine.core._trace_option import set_tensor_shape | |||
| @@ -150,7 +149,6 @@ def test_capture_dump(): | |||
| np.testing.assert_equal(result[0], y) | |||
| @pytest.mark.skip(reason="get MultipleDeviceTensorHolder instead of SharedDeviceTensor") | |||
| def test_dump_volatile(): | |||
| p = as_raw_tensor([2]) | |||
| @@ -167,7 +165,7 @@ def test_dump_volatile(): | |||
| np.testing.assert_equal(f(as_raw_tensor(x)).numpy(), y) | |||
| file = io.BytesIO() | |||
| f.dump(file) | |||
| f.dump(file, optimize_for_inference=False) | |||
| file.seek(0) | |||
| cg, _, outputs = G.load_graph(file) | |||
| (out,) = outputs | |||
| @@ -196,26 +194,7 @@ def test_trace_profiler(): | |||
| assert out.get("profiler") | |||
| @pytest.mark.skip(reason="eq_to_unit failed in inplace.cpp") | |||
| def test_goptions_div_zero(): | |||
| @trace(symbolic=True, opt_level=0) | |||
| def f(x): | |||
| return x / x | |||
| @trace(symbolic=True, opt_level=1) | |||
| def g(x): | |||
| return x / x | |||
| out = f(tensor(0.0)) | |||
| if out == out: | |||
| raise ValueError("actual result should be nan") | |||
| out = g(tensor(0.0)) | |||
| if out != out: | |||
| raise ValueError("actual result should be 1") | |||
| @pytest.mark.skip(reason="cast to Elemwise failed in inplace.cpp") | |||
| @pytest.mark.skip(reason="could not disable opt_level") | |||
| def test_goptions_log_exp(): | |||
| @trace(symbolic=True, opt_level=0, capture_as_const=True) | |||
| def f(x): | |||
| @@ -227,19 +206,19 @@ def test_goptions_log_exp(): | |||
| f(tensor(1.0)) | |||
| _, out = mkstemp() | |||
| f.dump(out) | |||
| *_, outputs = G.load_comp_graph_from_file(out) | |||
| f.dump(out, optimize_for_inference=False) | |||
| *_, outputs = G.load_graph(out) | |||
| oprs_1 = cgtools.get_oprs_seq(outputs) | |||
| g(tensor(1.0)) | |||
| g.dump(out) | |||
| *_, outputs = G.load_comp_graph_from_file(out) | |||
| g.dump(out, optimize_for_inference=False) | |||
| *_, outputs = G.load_graph(out) | |||
| oprs_2 = cgtools.get_oprs_seq(outputs) | |||
| assert len(oprs_1) - len(oprs_2) == 2 | |||
| @pytest.mark.skip(reason="need cgtools to check final oprs") | |||
| @pytest.mark.skip(reason="could not disable opt_level") | |||
| def test_goptions_log_sum_exp(): | |||
| @trace(symbolic=True, opt_level=0, capture_as_const=True) | |||
| def f(x, y): | |||
| @@ -251,19 +230,18 @@ def test_goptions_log_sum_exp(): | |||
| f(tensor(1.0), tensor(2.0)) | |||
| _, out = mkstemp() | |||
| f.dump(out) | |||
| *_, outputs = G.load_comp_graph_from_file(out) | |||
| f.dump(out, optimize_for_inference=False) | |||
| *_, outputs = G.load_graph(out) | |||
| oprs_1 = cgtools.get_oprs_seq(outputs) | |||
| g(tensor(1.0), tensor(2.0)) | |||
| g.dump(out) | |||
| *_, outputs = G.load_comp_graph_from_file(out) | |||
| g.dump(out, optimize_for_inference=False) | |||
| *_, outputs = G.load_graph(out) | |||
| oprs_2 = cgtools.get_oprs_seq(outputs) | |||
| assert len(oprs_1) - len(oprs_2) == 2 | |||
| @pytest.mark.skip(reason="need cgtools to check computing input dtype") | |||
| def test_optimize_for_inference(): | |||
| @trace(symbolic=True, capture_as_const=True) | |||
| def f(x): | |||
| @@ -271,9 +249,9 @@ def test_optimize_for_inference(): | |||
| _, out = mkstemp() | |||
| f(tensor(5.0)) | |||
| f.dump(out, optimize_for_inference=True, optimize_options={"enable_io16xc32": True}) | |||
| f.dump(out, enable_io16xc32=True) | |||
| res = G.load_comp_graph_from_file(out) | |||
| res = G.load_graph(out) | |||
| computing_input = res.output_vars_list[0].owner.inputs[0] | |||
| assert computing_input.dtype == np.float16 | |||