You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

graph_rt.cpp 26 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596
  1. /**
  2. * \file imperative/python/src/graph_rt.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "./graph_rt.h"
  12. #include "megbrain/graph/cg.h"
  13. #include "megbrain/serialization/serializer.h"
  14. #include "megbrain/imperative/opr_utility.h"
  15. #include "megbrain/opr/io.h"
  16. #include "megbrain/opr/utility.h"
  17. #include "megbrain/opr/basic_arith.h"
  18. #include "megbrain/imperative.h"
  19. #include "./helper.h"
  20. #include "megbrain/plugin/profiler.h"
  21. #include "./common.h"
  22. #include "./ops.h"
  23. #include "megbrain/gopt/inference.h"
  24. namespace py = pybind11;
  25. using namespace mgb;
  26. using namespace imperative;
  27. namespace ser = mgb::serialization;
  28. using _OptimizeForInferenceOptions = mgb::gopt::OptimizeForInferenceOptions;
  29. using _LayoutTransform = _OptimizeForInferenceOptions::LayoutTransform;
  30. using _AlgoStrategy = opr::mixin::AlgoChooserHelper::ExecutionPolicy::Strategy;
  31. namespace {
  32. class _CompGraphProfilerImpl {
  33. std::shared_ptr<ComputingGraph> m_comp_graph;
  34. GraphProfiler m_profiler;
  35. public:
  36. _CompGraphProfilerImpl(std::shared_ptr<ComputingGraph> cg):
  37. m_comp_graph{cg},
  38. m_profiler{m_comp_graph.get()}
  39. {
  40. }
  41. std::string _get_result() {
  42. auto json = m_profiler.to_json_full(
  43. m_comp_graph->current_comp_seq());
  44. return json->to_string();
  45. }
  46. };
  47. struct WeakRendezvousArray:
  48. public std::vector<std::weak_ptr<RendezvousBase>>,
  49. public UserDataContainer::UserData {
  50. MGB_TYPEINFO_OBJ_DECL;
  51. };
  52. MGB_TYPEINFO_OBJ_IMPL(WeakRendezvousArray);
  53. }
  54. #define DEF_READWRITE(name) .def_readwrite(#name, &CURRENT_CLASS::name)
  55. template<typename T>
  56. auto def_rendezvous(py::object m, const char* name) {
  57. return py::class_<Rendezvous<T>, std::shared_ptr<Rendezvous<T>>>(m, name)
  58. .def(py::init([](){return Rendezvous<T>::make();}))
  59. .def("set", [](Rendezvous<T>& r, T v) {r.set(std::move(v));})
  60. .def("get", [](Rendezvous<T>& r) {return r.get();}, py::call_guard<py::gil_scoped_release>())
  61. .def("drop", &Rendezvous<T>::drop)
  62. .def("reset", &Rendezvous<T>::reset)
  63. .def("set_exception", [](Rendezvous<T>& r, std::string&& message) {
  64. r.set_exception(std::make_exception_ptr(
  65. std::runtime_error(std::move(message))));
  66. });
  67. }
  68. using TensorAttr = LogicalTensorDesc;
  69. using HostNDWithEvent = std::pair<HostTensorND, std::shared_ptr<CompNode::Event>>;
  70. std::vector<mgb::cg::VarNode*> _replace_vars(const std::vector<mgb::cg::VarNode*>& repl_src,
  71. const std::vector<mgb::cg::VarNode*>& repl_dst,
  72. const std::vector<mgb::cg::VarNode*>& vars) {
  73. mgb::ThinHashMap<SymbolVar, SymbolVar> varmap;
  74. for (size_t i = 0; i < repl_src.size(); ++i) {
  75. varmap[SymbolVar(repl_src[i])] = SymbolVar(repl_dst[i]);
  76. }
  77. SymbolVarArray symvars(vars.begin(), vars.end());
  78. auto sym_result = mgb::cg::replace_vars(symvars, varmap);
  79. std::vector<mgb::cg::VarNode*> result;
  80. for (auto symvar : sym_result){
  81. result.push_back(symvar.node());
  82. }
  83. return result;
  84. }
  85. typedef std::vector<mgb::cg::OperatorNodeBase*> OperatorArray;
  86. std::vector<mgb::cg::VarNode*> _replace_oprs(const OperatorArray& repl_src,
  87. const OperatorArray& repl_dst,
  88. const std::vector<mgb::cg::VarNode*>& vars) {
  89. mgb::ThinHashMap<mgb::cg::OperatorNodeBase*, mgb::cg::OperatorNodeBase*>
  90. oprmap;
  91. for (size_t i = 0; i < repl_src.size(); ++i) {
  92. oprmap[repl_src[i]] = repl_dst[i];
  93. }
  94. const SymbolVarArray symvars(vars.begin(), vars.end());
  95. auto sym_result = mgb::cg::replace_oprs(symvars, oprmap);
  96. std::vector<mgb::cg::VarNode*> result;
  97. for (auto symvar : sym_result){
  98. result.push_back(symvar.node());
  99. }
  100. return result;
  101. }
  102. void _set_priority_to_id(const std::vector<mgb::cg::VarNode*>& dest_vars) {
  103. auto on_opr = [](mgb::cg::OperatorNodeBase* opr) {
  104. if (opr->node_prop().attribute().priority == 0) {
  105. opr->node_prop().attribute().priority = opr->id();
  106. }
  107. };
  108. mgb::cg::DepOprIter dep_iter{on_opr};
  109. for (const auto& var : dest_vars) {
  110. dep_iter.add(SymbolVar(var));
  111. }
  112. }
  113. void init_graph_rt(py::module m) {
  114. static const std::unique_ptr<mgb::OprFootprint> _imperative_sm_opr_footprint_ptr{std::make_unique<mgb::OprFootprint>()};
  115. def_rendezvous<DeviceTensorND>(m, "DeviceTensorNDRendezvous");
  116. def_rendezvous<HostNDWithEvent>(m, "HostTensorNDRendezvous");
  117. def_rendezvous<TensorAttr>(m, "TensorAttrRendezvous");
  118. py::class_<cg::VarNode, GraphNodePtr<cg::VarNode>>(m, "VarNode")
  119. .def_property_readonly("owner", [](cg::VarNode* v) {return v->owner_opr();})
  120. .def_property_readonly("graph", [](cg::VarNode* v) {return v->owner_graph();})
  121. .def_property("name", py::overload_cast<>(&VarNode::name, py::const_),
  122. py::overload_cast<std::string>(&VarNode::name))
  123. .def_property_readonly("dtype", [](cg::VarNode* v) {return v->dtype();})
  124. .def_property_readonly("comp_node", [](cg::VarNode* v) {return v->comp_node();})
  125. .def_property_readonly("shape", [](cg::VarNode* v) -> const TensorShape* {
  126. auto&& mgr = v->owner_graph()->static_infer_manager();
  127. return mgr.infer_shape_fallible(v);
  128. })
  129. .def_property_readonly("value", [](cg::VarNode* v) -> py::object {
  130. auto&& mgr = v->owner_graph()->static_infer_manager();
  131. auto&& type = mgr.get_infer_type(v);
  132. using InferType = cg::static_infer::InferType;
  133. if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) {
  134. return py::none();
  135. }
  136. auto* val = mgr.infer_value_fallible(v);
  137. if (!val) {
  138. return py::none();
  139. }
  140. return py::cast(*val).attr("numpy")();
  141. })
  142. .def_property_readonly("id",[](cg::VarNode* v){
  143. return (v->id());
  144. })
  145. .def("__repr__", [](cg::VarNode* v) {
  146. return "Var:" + v->name();
  147. });
  148. py::class_<cg::OperatorNodeBase, GraphNodePtr<cg::OperatorNodeBase>>(m, "OperatorNode")
  149. .def_property_readonly("graph", [](cg::OperatorNodeBase* opr) {return opr->owner_graph();})
  150. .def_property("name", py::overload_cast<>(&cg::OperatorNodeBase::name, py::const_),
  151. py::overload_cast<std::string>(&cg::OperatorNodeBase::name))
  152. .def_property_readonly("inputs", [](cg::OperatorNodeBase* opr) {
  153. return to_tuple(opr->input());
  154. })
  155. .def_property_readonly("outputs", [](cg::OperatorNodeBase* opr) {
  156. return to_tuple(opr->usable_output());
  157. })
  158. .def_property_readonly("id",[](cg::OperatorNodeBase* opr){
  159. return opr->id();
  160. })
  161. .def_property_readonly("params",[](cg::OperatorNodeBase* opr){
  162. return _imperative_sm_opr_footprint_ptr->calc_footprint(opr).param->to_string();
  163. })
  164. .def_property_readonly("type",[](cg::OperatorNodeBase* opr){
  165. return opr->dyn_typeinfo()->name;
  166. })
  167. .def("__repr__", [](cg::OperatorNodeBase* opr){
  168. return "Opr:" + opr->name();
  169. });
  170. py::class_<cg::AsyncExecutable>(m, "AsyncExecutable")
  171. .def("execute", &cg::AsyncExecutable::execute, py::call_guard<py::gil_scoped_release>())
  172. .def("wait", &cg::AsyncExecutable::wait, py::call_guard<py::gil_scoped_release>())
  173. .def("get_prev_exec_time", &cg::AsyncExecutable::get_prev_exec_time, py::call_guard<py::gil_scoped_release>())
  174. .def("_to_json", [](cg::AsyncExecutable* exec) {
  175. py::call_guard<py::gil_scoped_release>();
  176. // dump currently compiled computing graph for debugging
  177. return exec->to_json()->to_string();
  178. })
  179. // only used for exception handle
  180. .def_property_readonly("_all_rendezvous", [](cg::AsyncExecutable* exec) {
  181. auto ud = exec->owner_graph()->options().user_data
  182. .get_user_data<WeakRendezvousArray>();
  183. std::vector<std::shared_ptr<RendezvousBase>> ret;
  184. if (ud.second) {
  185. for (auto&& r: *ud.first[0]) {
  186. if (auto p = r.lock()) {
  187. ret.emplace_back(std::move(p));
  188. }
  189. }
  190. }
  191. return ret;
  192. });
  193. auto PyComputingGraph = py::class_<cg::ComputingGraph, std::shared_ptr<cg::ComputingGraph>>(m, "ComputingGraph")
  194. .def(py::init(py::overload_cast<>(&cg::ComputingGraph::make)))
  195. .def("compile", [](cg::ComputingGraph& graph, const std::vector<cg::VarNode*>& dest_vars) {
  196. mgb_assert(!dest_vars.empty());
  197. cg::ComputingGraph::OutputSpec spec;
  198. for (auto v : dest_vars) {
  199. spec.emplace_back(v, nullptr);
  200. }
  201. return graph.compile(spec);
  202. })
  203. .def_property_readonly("options", py::overload_cast<>(&cg::ComputingGraph::options));
  204. py::class_<_CompGraphProfilerImpl, std::shared_ptr<_CompGraphProfilerImpl>>(m, "GraphProfiler")
  205. .def(py::init([](std::shared_ptr<ComputingGraph> graph) {
  206. return std::make_shared<_CompGraphProfilerImpl>(graph);
  207. }))
  208. .def("get", [](_CompGraphProfilerImpl& profiler) { return profiler._get_result(); });
  209. auto GraphOptimizeOptions = py::class_<_OptimizeForInferenceOptions>(m, "GraphOptimizeOptions")
  210. .def(py::init())
  211. .def_readwrite("f16_io_f32_comp", &_OptimizeForInferenceOptions::f16_io_f32_comp)
  212. .def_readwrite("f16_io_comp", &_OptimizeForInferenceOptions::f16_io_comp)
  213. .def_readwrite("fuse_conv_bias_nonlinearity", &_OptimizeForInferenceOptions::fuse_conv_bias_nonlinearity)
  214. .def_readwrite("fuse_conv_bias_with_z", &_OptimizeForInferenceOptions::fuse_conv_bias_with_z)
  215. .def_readwrite("layout_transform", &_OptimizeForInferenceOptions::layout_transform)
  216. ;
  217. py::enum_<_LayoutTransform>(GraphOptimizeOptions, "LayoutTransform")
  218. .value("DEFAULT", _LayoutTransform::DEFAULT)
  219. .value("NCHW4", _LayoutTransform::NCHW4)
  220. .value("NHWCD4", _LayoutTransform::NHWCD4)
  221. .value("NCHW88", _LayoutTransform::NCHW88)
  222. .value("NCHW44", _LayoutTransform::NCHW44)
  223. .value("NCHW44_DOT", _LayoutTransform::NCHW44_DOT)
  224. .value("NCHW32", _LayoutTransform::NCHW32)
  225. .value("CHWN4", _LayoutTransform::CHWN4)
  226. .export_values()
  227. ;
  228. m.def("optimize_for_inference", [](const VarNodeArray& dest_vars, const _OptimizeForInferenceOptions& opt) {
  229. SymbolVarArray symvars(dest_vars.begin(), dest_vars.end());
  230. auto res_symvars = mgb::gopt::optimize_for_inference(symvars, opt);
  231. VarNodeArray vars;
  232. for (auto& si: res_symvars)
  233. vars.push_back(si.node());
  234. return vars;
  235. });
  236. m.def("modify_opr_algo_strategy_inplace", [](const VarNodeArray& dest_vars,
  237. const _AlgoStrategy& strategy) {
  238. mgb::gopt::modify_opr_algo_strategy_inplace(dest_vars, strategy);
  239. });
  240. m.def("get_info_for_strip", [](const std::vector<VarNode*>& dest_vars) {
  241. std::unordered_set<const char*> opr_types, dtype_names, elemwise_modes;
  242. auto on_opr = [&](cg::OperatorNodeBase *opr) {
  243. if (ser::GraphDumper::should_remove_in_dump(opr))
  244. return;
  245. opr_types.insert(opr->dyn_typeinfo()->name);
  246. for (auto i : opr->output())
  247. dtype_names.insert(i->dtype().name());
  248. if (opr->same_type<opr::Elemwise>()) {
  249. auto mode = opr->cast_final<opr::Elemwise>().param().mode;
  250. elemwise_modes.insert(
  251. megdnn::Elemwise::ModeTrait::from_mode(mode).name);
  252. }
  253. };
  254. cg::DepOprIter opr_iter{on_opr};
  255. for (auto i : dest_vars)
  256. opr_iter.add(i->owner_opr());
  257. auto to_json = [](const std::unordered_set<const char*> &v) {
  258. std::vector<std::string> vs(v.begin(), v.end());
  259. std::sort(vs.begin(), vs.end());
  260. auto ret = json::Array::make();
  261. for (auto &&i : vs)
  262. ret->add(json::String::make(i));
  263. return ret;
  264. };
  265. return json::Object::make({
  266. {"opr_types", to_json(opr_types)},
  267. {"dtypes", to_json(dtype_names)},
  268. {"elemwise_modes", to_json(elemwise_modes)},
  269. })->to_string();
  270. });
  271. m.def("dump_graph", [](
  272. const std::vector<VarNode*>& dest_vars,
  273. int keep_var_name,
  274. bool keep_opr_name,
  275. bool keep_param_name,
  276. bool keep_opr_priority,
  277. py::list& stat,
  278. py::list& inputs,
  279. py::list& outputs,
  280. py::list& params
  281. ) {
  282. std::vector<uint8_t> buf;
  283. auto dumper = ser::GraphDumper::make(ser::OutputFile::make_vector_proxy(&buf));
  284. SymbolVarArray symvars(dest_vars.begin(), dest_vars.end());
  285. ser::GraphDumper::DumpConfig config{keep_var_name, keep_param_name,
  286. keep_opr_priority, keep_opr_name};
  287. auto rst = dumper->dump(symvars, config);
  288. for (auto i : rst.inputs) {
  289. inputs.append(py::cast(i));
  290. }
  291. for (auto i : rst.outputs) {
  292. outputs.append(py::cast(i));
  293. }
  294. for (auto i : rst.params) {
  295. params.append(py::cast(i));
  296. }
  297. auto rst_stat =
  298. std::vector{rst.nr_opr, rst.tot_bytes, rst.tensor_value_bytes,
  299. static_cast<size_t>(rst.content_hash)};
  300. for (auto i : rst_stat) {
  301. stat.append(py::cast(i));
  302. }
  303. return py::bytes(reinterpret_cast<const char*>(&buf[0]), buf.size());
  304. });
  305. m.def("load_graph", [](
  306. std::string& buf,
  307. py::list& output_var_map,
  308. py::list& output_var_list
  309. ) {
  310. auto file = ser::InputFile::make_mem_proxy(buf.c_str(), buf.length());
  311. auto format = ser::GraphLoader::identify_graph_dump_format(*file);
  312. auto loader = ser::GraphLoader::make(std::move(file), format.val());
  313. ser::GraphLoader::LoadConfig config;
  314. auto rst = loader->load(config);
  315. for (auto i : rst.output_var_map) {
  316. output_var_map.append(py::make_tuple(i.first, i.second.node()));
  317. }
  318. for (auto i : rst.output_var_list) {
  319. output_var_list.append(i.node());
  320. }
  321. std::unordered_map<HostTensorND*, const std::string*> tensor2name;
  322. for (const auto& pair : rst.tensor_map) {
  323. tensor2name[pair.second.get()] = &pair.first;
  324. }
  325. auto cb = [&tensor2name, graph=rst.graph](cg::OperatorNodeBase* opr) {
  326. if (!opr->same_type<opr::Host2DeviceCopy>())
  327. return;
  328. auto& h2d = opr->cast_final_safe<opr::Host2DeviceCopy>();
  329. auto it = tensor2name.find(h2d.host_data().get());
  330. mgb_throw_if(it == tensor2name.end(), GraphError,
  331. "unbound Host2DeviceCopy in loaded graph");
  332. h2d.output(0)->name(*it->second);
  333. };
  334. cg::DepOprIter iter{cb};
  335. for (const auto& var : rst.output_var_list) {
  336. iter.add(var);
  337. }
  338. return rst.graph;
  339. });
  340. #define CURRENT_CLASS cg::ComputingGraph::Options
  341. auto PyComputingGraphOptions = py::class_<cg::ComputingGraph::Options>(PyComputingGraph, "Options")
  342. // DEF_READWRITE(opr_attribute)
  343. DEF_READWRITE(seq_opt)
  344. DEF_READWRITE(graph_opt)
  345. DEF_READWRITE(graph_opt_level)
  346. DEF_READWRITE(log_level)
  347. DEF_READWRITE(async_exec_level)
  348. DEF_READWRITE(force_dynamic_alloc)
  349. DEF_READWRITE(var_sanity_check_first_run)
  350. DEF_READWRITE(allocate_static_mem_after_graph_compile)
  351. DEF_READWRITE(fake_next_exec)
  352. DEF_READWRITE(enable_sublinear_memory_opt)
  353. DEF_READWRITE(no_profiling_on_shape_change)
  354. DEF_READWRITE(enable_var_mem_defragment)
  355. DEF_READWRITE(enable_grad_var_static_reshape)
  356. DEF_READWRITE(enable_memory_swap)
  357. DEF_READWRITE(comp_node_seq_record_level)
  358. DEF_READWRITE(no_force_inplace)
  359. DEF_READWRITE(sublinear_mem_config)
  360. // DEF_READWRITE(eager_evaluation)
  361. // DEF_READWRITE(imperative_proxy_graph)
  362. // DEF_READWRITE(extra_vardeps)
  363. // DEF_READWRITE(user_data)
  364. ;
  365. #undef CURRENT_CLASS
  366. #define CURRENT_CLASS cg::ComputingGraph::Options::SeqOpt
  367. py::class_<cg::ComputingGraph::Options::SeqOpt>(PyComputingGraphOptions, "SeqOpt")
  368. DEF_READWRITE(enable_mem_plan_opt)
  369. DEF_READWRITE(enable_mem_reuse_alloc)
  370. DEF_READWRITE(enable_seq_comp_node_opt);
  371. #undef CURRENT_CLASS
  372. #define CURRENT_CLASS cg::ComputingGraph::Options::GraphOpt
  373. py::class_<cg::ComputingGraph::Options::GraphOpt>(PyComputingGraphOptions, "GraphOpt")
  374. DEF_READWRITE(jit)
  375. DEF_READWRITE(tensorrt);
  376. #undef CURRENT_CLASS
  377. #define CURRENT_CLASS cg::ComputingGraph::Options::SublinearMemConfig
  378. py::class_<cg::ComputingGraph::Options::SublinearMemConfig>(PyComputingGraphOptions, "SublinearMemConfig")
  379. DEF_READWRITE(thresh_nr_try)
  380. DEF_READWRITE(genetic_nr_iter)
  381. DEF_READWRITE(genetic_pool_size)
  382. DEF_READWRITE(lb_memory)
  383. DEF_READWRITE(num_worker);
  384. #undef CURRENT_CLASS
  385. auto common = rel_import("common", m, 1);
  386. common.def("invoke_op", [](const OpDef& def, const std::vector<cg::VarNode*> inputs, cg::ComputingGraph* graph) {
  387. cg::VarNodeArray vinputs(inputs.begin(), inputs.end());
  388. return to_tuple(OpDef::apply_on_var_node(def, vinputs));
  389. },
  390. py::arg(), py::arg(), py::arg("graph") = py::none());
  391. auto input_callback = [](auto callback,
  392. const CompNode& comp_node,
  393. const DType& dtype,
  394. const TensorShape& shape,
  395. const std::vector<cg::VarNode*>& inputs,
  396. cg::ComputingGraph* graph,
  397. bool use_static_shape) {
  398. if (!graph) {
  399. graph = inputs[0]->owner_graph();
  400. }
  401. SymbolVarArray sinputs;
  402. for (auto i : inputs) {
  403. sinputs.emplace_back(i);
  404. }
  405. static_assert(!std::is_reference<decltype(callback)>::value);
  406. auto soutputs = opr::InputCallback::make(*graph, std::move(callback),
  407. comp_node, dtype, shape,
  408. sinputs, use_static_shape);
  409. std::vector<VarNode*> outputs;
  410. outputs.reserve(soutputs.size());
  411. for (auto i : soutputs) {
  412. outputs.push_back(i.node());
  413. }
  414. return outputs;
  415. };
  416. m.def("make_shared", [](cg::ComputingGraph* graph, const DeviceTensorND& data) {
  417. return opr::SharedDeviceTensor::make(*graph, std::make_shared<DeviceTensorND>(data)).node();
  418. });
  419. m.def("make_const", [](cg::ComputingGraph* graph, py::array data, CompNode cn, DType dtype, std::optional<std::string> name) {
  420. if (!cn.valid()) {
  421. cn = CompNode::load(get_default_device());
  422. }
  423. OperatorNodeConfig config(cn);
  424. if (name) {
  425. config.name(*name);
  426. }
  427. auto hv = npy::np2tensor(data.ptr(), npy::Meth::borrow(cn), dtype);
  428. return opr::ImmutableTensor::make(*graph, hv, config).node();
  429. }, py::arg(), py::arg(), py::arg(), py::arg(), py::arg() = py::none());
  430. m.def("make_h2d", [](cg::ComputingGraph& graph, CompNode cn, DType dtype, TensorShape shape, std::optional<std::string> name) {
  431. if (!cn.valid()) {
  432. throw py::type_error("device must be valid");
  433. }
  434. if (!dtype.valid()) {
  435. throw py::type_error("dtype must be valid");
  436. }
  437. OperatorNodeConfig config;
  438. if (name) {
  439. config.name(*name);
  440. }
  441. return opr::Host2DeviceCopy::make(graph, std::make_shared<HostTensorND>(cn, shape, dtype), config).node();
  442. }, py::arg(), py::arg(), py::arg(), py::arg() = py::none(), py::arg() = py::none());
  443. m.def("_replace_vars", &_replace_vars,py::arg(),py::arg(),py::arg());
  444. m.def("_replace_oprs", &_replace_oprs,py::arg(),py::arg(),py::arg());
  445. m.def("_set_priority_to_id",&_set_priority_to_id,py::arg());
  446. m.def("input_callback", [input_callback](std::function<DeviceTensorND(void)> callback,
  447. const CompNode& comp_node,
  448. const DType& dtype,
  449. const TensorShape& shape,
  450. const std::vector<cg::VarNode*>& inputs,
  451. cg::ComputingGraph* graph,
  452. bool use_static_shape) {
  453. return input_callback(
  454. [f=std::move(callback)](){py::gil_scoped_acquire _; return f();},
  455. comp_node, dtype, shape, inputs, graph, use_static_shape);
  456. },
  457. py::arg(), py::arg(), py::arg(), py::arg() = py::none(), py::arg() = py::tuple(),
  458. py::arg("graph") = py::none(), py::arg("use_static_shape") = false);
  459. m.def("input_callback", [input_callback](std::shared_ptr<Rendezvous<DeviceTensorND>> p,
  460. const CompNode& comp_node,
  461. const DType& dtype,
  462. const TensorShape& shape,
  463. const std::vector<cg::VarNode*>& inputs,
  464. cg::ComputingGraph* graph,
  465. bool use_static_shape) {
  466. auto f = [p]() -> DeviceTensorND {
  467. return p->get();
  468. };
  469. return input_callback(std::move(f), comp_node, dtype, shape, inputs, graph, use_static_shape);
  470. },
  471. py::arg(), py::arg(), py::arg(), py::arg() = py::none(), py::arg() = py::tuple(),
  472. py::arg("graph") = py::none(), py::arg("use_static_shape") = false);
  473. auto output_callback = [](auto callback, const std::vector<cg::VarNode*>& inputs,
  474. std::shared_ptr<RendezvousBase> r = {}, bool borrow = false, bool prefer_host_value = false) {
  475. if (r) {
  476. mgb_assert(inputs.size());
  477. auto cg = inputs[0]->owner_graph();
  478. cg->options().user_data.get_user_data_or_create<WeakRendezvousArray>()
  479. ->emplace_back(r);
  480. }
  481. SymbolVarArray sinputs;
  482. for (auto i : inputs) {
  483. sinputs.emplace_back(i);
  484. }
  485. static_assert(!std::is_reference<decltype(callback)>::value);
  486. opr::OutputCallback::Param param{std::move(callback), borrow, prefer_host_value};
  487. auto output = opr::OutputCallback::make(std::move(param), sinputs);
  488. return output.node();
  489. };
  490. m.def("output_callback", [output_callback](std::function<void(DeviceTensorND)> callback, std::vector<cg::VarNode*> inputs) {
  491. auto f = [f=std::move(callback)](DeviceTensorND dv) {
  492. auto task = [f=std::move(f), dv=std::move(dv)]() {
  493. f(dv);
  494. };
  495. py_task_q.add_task(std::move(task));
  496. };
  497. return output_callback(std::move(f), std::move(inputs));
  498. });
  499. m.def("output_callback", [output_callback](std::shared_ptr<Rendezvous<DeviceTensorND>> p, std::vector<cg::VarNode*> inputs) {
  500. auto f = [p](DeviceTensorND dv) {
  501. p->set(std::move(dv));
  502. };
  503. return output_callback(std::move(f), std::move(inputs), p);
  504. });
  505. m.def("value_output_callback", [output_callback](std::shared_ptr<Rendezvous<HostNDWithEvent>> p, std::vector<cg::VarNode*> inputs) {
  506. auto f = [p](DeviceTensorND dv) {
  507. HostNDWithEvent hv_with_event;
  508. hv_with_event.first.copy_from(dv);
  509. hv_with_event.second = dv.comp_node().create_event();
  510. hv_with_event.second->record();
  511. p->set(std::move(hv_with_event));
  512. };
  513. return output_callback(std::move(f), std::move(inputs), p, true, true);
  514. });
  515. m.def("attr_output_callback", [output_callback](std::shared_ptr<Rendezvous<TensorAttr>> p, std::vector<cg::VarNode*> inputs) {
  516. auto f = [p](DeviceTensorND dv) {
  517. p->set(TensorAttr{TensorLayout{dv.shape(), dv.dtype()}, dv.comp_node()});
  518. };
  519. return output_callback(std::move(f), std::move(inputs), p, true);
  520. });
  521. m.def("virtual_dep", [](std::vector<cg::VarNode*> inputs, std::string device) {
  522. auto&& graph = inputs[0]->owner_graph();
  523. VarNodeArray inps(inputs.begin(), inputs.end());
  524. cg::OperatorNodeConfig config;
  525. if (device.length() > 0) {
  526. config.comp_node(CompNode::load(device));
  527. }
  528. cg::OperatorNodeBase* opr = graph->insert_opr(
  529. std::make_unique<mgb::opr::VirtualDep>(inps, config));
  530. return opr;
  531. });
  532. }

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台