You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

graph_rt.cpp 24 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563
  1. /**
  2. * \file imperative/python/src/graph_rt.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "./graph_rt.h"
  12. #include "megbrain/graph/cg.h"
  13. #include "megbrain/serialization/serializer.h"
  14. #include "megbrain/imperative/opr_utility.h"
  15. #include "megbrain/opr/io.h"
  16. #include "megbrain/opr/basic_arith.h"
  17. #include "megbrain/imperative.h"
  18. #include "./helper.h"
  19. #include "megbrain/plugin/profiler.h"
  20. #include "./common.h"
  21. #include "megbrain/gopt/inference.h"
  22. namespace py = pybind11;
  23. using namespace mgb;
  24. using namespace imperative;
  25. namespace ser = mgb::serialization;
  26. using _OptimizeForInferenceOptions = mgb::gopt::OptimizeForInferenceOptions;
  27. using _LayoutTransform = _OptimizeForInferenceOptions::LayoutTransform;
  28. namespace {
  29. class _CompGraphProfilerImpl {
  30. std::shared_ptr<ComputingGraph> m_comp_graph;
  31. GraphProfiler m_profiler;
  32. public:
  33. _CompGraphProfilerImpl(std::shared_ptr<ComputingGraph> cg):
  34. m_comp_graph{cg},
  35. m_profiler{m_comp_graph.get()}
  36. {
  37. }
  38. std::string _get_result() {
  39. auto json = m_profiler.to_json_full(
  40. m_comp_graph->current_comp_seq());
  41. return json->to_string();
  42. }
  43. };
  44. struct WeakRendezvousArray:
  45. public std::vector<std::weak_ptr<RendezvousBase>>,
  46. public UserDataContainer::UserData {
  47. MGB_TYPEINFO_OBJ_DECL;
  48. };
  49. MGB_TYPEINFO_OBJ_IMPL(WeakRendezvousArray);
  50. }
  51. #define DEF_READWRITE(name) .def_readwrite(#name, &CURRENT_CLASS::name)
  52. template<typename T>
  53. auto def_rendezvous(py::object m, const char* name) {
  54. return py::class_<Rendezvous<T>, std::shared_ptr<Rendezvous<T>>>(m, name)
  55. .def(py::init([](){return Rendezvous<T>::make();}))
  56. .def("set", [](Rendezvous<T>& r, T v) {r.set(std::move(v));})
  57. .def("get", [](Rendezvous<T>& r) {return r.get();}, py::call_guard<py::gil_scoped_release>())
  58. .def("drop", &Rendezvous<T>::drop)
  59. .def("reset", &Rendezvous<T>::reset)
  60. .def("set_exception", [](Rendezvous<T>& r, std::string&& message) {
  61. r.set_exception(std::make_exception_ptr(
  62. std::runtime_error(std::move(message))));
  63. });
  64. }
  65. using TensorAttr = LogicalTensorDesc;
  66. using HostNDWithEvent = std::pair<HostTensorND, std::shared_ptr<CompNode::Event>>;
  67. std::vector<mgb::cg::VarNode*> _replace_vars(const std::vector<mgb::cg::VarNode*>& repl_src,
  68. const std::vector<mgb::cg::VarNode*>& repl_dst,
  69. const std::vector<mgb::cg::VarNode*>& vars) {
  70. mgb::ThinHashMap<SymbolVar, SymbolVar> varmap;
  71. for (size_t i = 0; i < repl_src.size(); ++i) {
  72. varmap[SymbolVar(repl_src[i])] = SymbolVar(repl_dst[i]);
  73. }
  74. SymbolVarArray symvars(vars.begin(), vars.end());
  75. auto sym_result = mgb::cg::replace_vars(symvars, varmap);
  76. std::vector<mgb::cg::VarNode*> result;
  77. for (auto symvar : sym_result){
  78. result.push_back(symvar.node());
  79. }
  80. return result;
  81. }
  82. typedef std::vector<mgb::cg::OperatorNodeBase*> OperatorArray;
  83. std::vector<mgb::cg::VarNode*> _replace_oprs(const OperatorArray& repl_src,
  84. const OperatorArray& repl_dst,
  85. const std::vector<mgb::cg::VarNode*>& vars) {
  86. mgb::ThinHashMap<mgb::cg::OperatorNodeBase*, mgb::cg::OperatorNodeBase*>
  87. oprmap;
  88. for (size_t i = 0; i < repl_src.size(); ++i) {
  89. oprmap[repl_src[i]] = repl_dst[i];
  90. }
  91. const SymbolVarArray symvars(vars.begin(), vars.end());
  92. auto sym_result = mgb::cg::replace_oprs(symvars, oprmap);
  93. std::vector<mgb::cg::VarNode*> result;
  94. for (auto symvar : sym_result){
  95. result.push_back(symvar.node());
  96. }
  97. return result;
  98. }
  99. void _set_priority_to_id(const std::vector<mgb::cg::VarNode*>& dest_vars) {
  100. auto on_opr = [](mgb::cg::OperatorNodeBase* opr) {
  101. if (opr->node_prop().attribute().priority == 0) {
  102. opr->node_prop().attribute().priority = opr->id();
  103. }
  104. };
  105. mgb::cg::DepOprIter dep_iter{on_opr};
  106. for (const auto& var : dest_vars) {
  107. dep_iter.add(SymbolVar(var));
  108. }
  109. }
  110. void init_graph_rt(py::module m) {
  111. static const std::unique_ptr<mgb::OprFootprint> _imperative_sm_opr_footprint_ptr{std::make_unique<mgb::OprFootprint>()};
  112. def_rendezvous<DeviceTensorND>(m, "DeviceTensorNDRendezvous");
  113. def_rendezvous<HostNDWithEvent>(m, "HostTensorNDRendezvous");
  114. def_rendezvous<TensorAttr>(m, "TensorAttrRendezvous");
  115. py::class_<cg::VarNode, GraphNodePtr<cg::VarNode>>(m, "VarNode")
  116. .def_property_readonly("owner", [](cg::VarNode* v) {return v->owner_opr();})
  117. .def_property_readonly("graph", [](cg::VarNode* v) {return v->owner_graph();})
  118. .def_property("name", py::overload_cast<>(&VarNode::name, py::const_),
  119. py::overload_cast<std::string>(&VarNode::name))
  120. .def_property_readonly("dtype", [](cg::VarNode* v) {return v->dtype();})
  121. .def_property_readonly("comp_node", [](cg::VarNode* v) {return v->comp_node();})
  122. .def_property_readonly("shape", [](cg::VarNode* v) -> const TensorShape* {
  123. auto&& mgr = v->owner_graph()->static_infer_manager();
  124. auto&& type = mgr.get_infer_type(v);
  125. using InferType = cg::static_infer::InferType;
  126. if (!(type.shape & (InferType::CONST | InferType::RT_STATIC))) {
  127. return nullptr;
  128. }
  129. return mgr.infer_shape_fallible(v);
  130. })
  131. .def_property_readonly("value", [](cg::VarNode* v) -> py::object {
  132. auto&& mgr = v->owner_graph()->static_infer_manager();
  133. auto&& type = mgr.get_infer_type(v);
  134. using InferType = cg::static_infer::InferType;
  135. if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) {
  136. return py::none();
  137. }
  138. auto* val = mgr.infer_value_fallible(v);
  139. if (!val) {
  140. return py::none();
  141. }
  142. return py::cast(*val).attr("numpy")();
  143. })
  144. .def_property_readonly("id",[](cg::VarNode* v){
  145. return (v->id());
  146. })
  147. .def("__repr__", [](cg::VarNode* v) {
  148. return "Var:" + v->name();
  149. });
  150. py::class_<cg::OperatorNodeBase, GraphNodePtr<cg::OperatorNodeBase>>(m, "OperatorNode")
  151. .def_property_readonly("graph", [](cg::OperatorNodeBase* opr) {return opr->owner_graph();})
  152. .def_property("name", py::overload_cast<>(&cg::OperatorNodeBase::name, py::const_),
  153. py::overload_cast<std::string>(&cg::OperatorNodeBase::name))
  154. .def_property_readonly("inputs", [](cg::OperatorNodeBase* opr) {
  155. return to_tuple(opr->input());
  156. })
  157. .def_property_readonly("outputs", [](cg::OperatorNodeBase* opr) {
  158. return to_tuple(opr->usable_output());
  159. })
  160. .def_property_readonly("id",[](cg::OperatorNodeBase* opr){
  161. return opr->id();
  162. })
  163. .def_property_readonly("params",[](cg::OperatorNodeBase* opr){
  164. return _imperative_sm_opr_footprint_ptr->calc_footprint(opr).param->to_string();
  165. })
  166. .def_property_readonly("type",[](cg::OperatorNodeBase* opr){
  167. return opr->dyn_typeinfo()->name;
  168. })
  169. .def("__repr__", [](cg::OperatorNodeBase* opr){
  170. return "Opr:" + opr->name();
  171. });
  172. py::class_<cg::AsyncExecutable>(m, "AsyncExecutable")
  173. .def("execute", &cg::AsyncExecutable::execute, py::call_guard<py::gil_scoped_release>())
  174. .def("wait", &cg::AsyncExecutable::wait, py::call_guard<py::gil_scoped_release>())
  175. // only used for exception handle
  176. .def_property_readonly("_all_rendezvous", [](cg::AsyncExecutable* exec) {
  177. auto ud = exec->owner_graph()->options().user_data
  178. .get_user_data<WeakRendezvousArray>();
  179. std::vector<std::shared_ptr<RendezvousBase>> ret;
  180. if (ud.second) {
  181. for (auto&& r: *ud.first[0]) {
  182. if (auto p = r.lock()) {
  183. ret.emplace_back(std::move(p));
  184. }
  185. }
  186. }
  187. return ret;
  188. });
  189. auto PyComputingGraph = py::class_<cg::ComputingGraph, std::shared_ptr<cg::ComputingGraph>>(m, "ComputingGraph")
  190. .def(py::init(py::overload_cast<>(&cg::ComputingGraph::make)))
  191. .def("compile", [](cg::ComputingGraph& graph, const std::vector<cg::VarNode*>& dest_vars) {
  192. mgb_assert(!dest_vars.empty());
  193. cg::ComputingGraph::OutputSpec spec;
  194. for (auto v : dest_vars) {
  195. spec.emplace_back(v, nullptr);
  196. }
  197. return graph.compile(spec);
  198. })
  199. .def_property_readonly("options", py::overload_cast<>(&cg::ComputingGraph::options));
  200. py::class_<_CompGraphProfilerImpl, std::shared_ptr<_CompGraphProfilerImpl>>(m, "GraphProfiler")
  201. .def(py::init([](std::shared_ptr<ComputingGraph> graph) {
  202. return std::make_shared<_CompGraphProfilerImpl>(graph);
  203. }))
  204. .def("get", [](_CompGraphProfilerImpl& profiler) { return profiler._get_result(); });
  205. auto GraphOptimizeOptions = py::class_<_OptimizeForInferenceOptions>(m, "GraphOptimizeOptions")
  206. .def(py::init())
  207. .def_readwrite("f16_io_f32_comp", &_OptimizeForInferenceOptions::f16_io_f32_comp)
  208. .def_readwrite("f16_io_comp", &_OptimizeForInferenceOptions::f16_io_comp)
  209. .def_readwrite("fuse_conv_bias_nonlinearity", &_OptimizeForInferenceOptions::fuse_conv_bias_nonlinearity)
  210. .def_readwrite("fuse_conv_bias_with_z", &_OptimizeForInferenceOptions::fuse_conv_bias_with_z)
  211. .def_readwrite("layout_transform", &_OptimizeForInferenceOptions::layout_transform)
  212. ;
  213. py::enum_<_LayoutTransform>(GraphOptimizeOptions, "LayoutTransform")
  214. .value("DEFAULT", _LayoutTransform::DEFAULT)
  215. .value("NCHW4", _LayoutTransform::NCHW4)
  216. .value("NHWCD4", _LayoutTransform::NHWCD4)
  217. .value("NCHW88", _LayoutTransform::NCHW88)
  218. .value("NCHW44", _LayoutTransform::NCHW44)
  219. .value("NCHW44_DOT", _LayoutTransform::NCHW44_DOT)
  220. .value("NCHW32", _LayoutTransform::NCHW32)
  221. .value("CHWN4", _LayoutTransform::CHWN4)
  222. .export_values()
  223. ;
  224. m.def("optimize_for_inference", [](const VarNodeArray& dest_vars, const _OptimizeForInferenceOptions& opt) {
  225. SymbolVarArray symvars(dest_vars.begin(), dest_vars.end());
  226. auto res_symvars = mgb::gopt::optimize_for_inference(symvars, opt);
  227. VarNodeArray vars;
  228. for (auto& si: res_symvars)
  229. vars.push_back(si.node());
  230. return vars;
  231. });
  232. m.def("get_info_for_strip", [](const std::vector<VarNode*>& dest_vars) {
  233. std::unordered_set<const char*> opr_types, dtype_names, elemwise_modes;
  234. auto on_opr = [&](cg::OperatorNodeBase *opr) {
  235. if (ser::GraphDumper::should_remove_in_dump(opr))
  236. return;
  237. opr_types.insert(opr->dyn_typeinfo()->name);
  238. for (auto i : opr->output())
  239. dtype_names.insert(i->dtype().name());
  240. if (opr->same_type<opr::Elemwise>()) {
  241. auto mode = opr->cast_final<opr::Elemwise>().param().mode;
  242. elemwise_modes.insert(
  243. megdnn::Elemwise::ModeTrait::from_mode(mode).name);
  244. }
  245. };
  246. cg::DepOprIter opr_iter{on_opr};
  247. for (auto i : dest_vars)
  248. opr_iter.add(i->owner_opr());
  249. auto to_json = [](const std::unordered_set<const char*> &v) {
  250. std::vector<std::string> vs(v.begin(), v.end());
  251. std::sort(vs.begin(), vs.end());
  252. auto ret = json::Array::make();
  253. for (auto &&i : vs)
  254. ret->add(json::String::make(i));
  255. return ret;
  256. };
  257. return json::Object::make({
  258. {"opr_types", to_json(opr_types)},
  259. {"dtypes", to_json(dtype_names)},
  260. {"elemwise_modes", to_json(elemwise_modes)},
  261. })->to_string();
  262. });
  263. m.def("dump_graph", [](
  264. const std::vector<VarNode*>& dest_vars,
  265. int keep_var_name,
  266. bool keep_param_name,
  267. bool keep_opr_priority,
  268. py::list& stat,
  269. py::list& inputs,
  270. py::list& outputs,
  271. py::list& params
  272. ) {
  273. std::vector<uint8_t> buf;
  274. auto dumper = ser::GraphDumper::make(ser::OutputFile::make_vector_proxy(&buf));
  275. SymbolVarArray symvars(dest_vars.begin(), dest_vars.end());
  276. ser::GraphDumper::DumpConfig config{keep_var_name, keep_param_name,
  277. keep_opr_priority};
  278. auto rst = dumper->dump(symvars, config);
  279. for (auto i : rst.inputs) {
  280. inputs.append(py::cast(i));
  281. }
  282. for (auto i : rst.outputs) {
  283. outputs.append(py::cast(i));
  284. }
  285. for (auto i : rst.params) {
  286. params.append(py::cast(i));
  287. }
  288. auto rst_stat =
  289. std::vector{rst.nr_opr, rst.tot_bytes, rst.tensor_value_bytes,
  290. static_cast<size_t>(rst.content_hash)};
  291. for (auto i : rst_stat) {
  292. stat.append(py::cast(i));
  293. }
  294. return py::bytes(reinterpret_cast<const char*>(&buf[0]), buf.size());
  295. });
  296. m.def("load_graph", [](
  297. std::string& buf,
  298. py::list& output_var_map,
  299. py::list& output_var_list
  300. ) {
  301. auto file = ser::InputFile::make_mem_proxy(buf.c_str(), buf.length());
  302. auto format = ser::GraphLoader::identify_graph_dump_format(*file);
  303. auto loader = ser::GraphLoader::make(std::move(file), format.val());
  304. ser::GraphLoader::LoadConfig config;
  305. auto rst = loader->load(config);
  306. for (auto i : rst.output_var_map) {
  307. output_var_map.append(py::make_tuple(i.first, i.second.node()));
  308. }
  309. for (auto i : rst.output_var_list) {
  310. output_var_list.append(i.node());
  311. }
  312. std::unordered_map<HostTensorND*, const std::string*> tensor2name;
  313. for (const auto& pair : rst.tensor_map) {
  314. tensor2name[pair.second.get()] = &pair.first;
  315. }
  316. auto cb = [&tensor2name, graph=rst.graph](cg::OperatorNodeBase* opr) {
  317. if (!opr->same_type<opr::Host2DeviceCopy>())
  318. return;
  319. auto& h2d = opr->cast_final_safe<opr::Host2DeviceCopy>();
  320. auto it = tensor2name.find(h2d.host_data().get());
  321. mgb_throw_if(it == tensor2name.end(), GraphError,
  322. "unbound Host2DeviceCopy in loaded graph");
  323. h2d.output(0)->name(*it->second);
  324. };
  325. cg::DepOprIter iter{cb};
  326. for (const auto& var : rst.output_var_list) {
  327. iter.add(var);
  328. }
  329. return rst.graph;
  330. });
  331. #define CURRENT_CLASS cg::ComputingGraph::Options
  332. auto PyComputingGraphOptions = py::class_<cg::ComputingGraph::Options>(PyComputingGraph, "Options")
  333. // DEF_READWRITE(opr_attribute)
  334. DEF_READWRITE(seq_opt)
  335. DEF_READWRITE(graph_opt)
  336. DEF_READWRITE(graph_opt_level)
  337. DEF_READWRITE(log_level)
  338. DEF_READWRITE(async_exec_level)
  339. DEF_READWRITE(force_dynamic_alloc)
  340. DEF_READWRITE(var_sanity_check_first_run)
  341. DEF_READWRITE(allocate_static_mem_after_graph_compile)
  342. DEF_READWRITE(fake_next_exec)
  343. DEF_READWRITE(enable_sublinear_memory_opt)
  344. DEF_READWRITE(no_profiling_on_shape_change)
  345. DEF_READWRITE(enable_var_mem_defragment)
  346. DEF_READWRITE(enable_grad_var_static_reshape)
  347. DEF_READWRITE(enable_memory_swap)
  348. DEF_READWRITE(comp_node_seq_record_level)
  349. DEF_READWRITE(no_force_inplace)
  350. DEF_READWRITE(sublinear_mem_config)
  351. // DEF_READWRITE(eager_evaluation)
  352. // DEF_READWRITE(imperative_proxy_graph)
  353. // DEF_READWRITE(extra_vardeps)
  354. // DEF_READWRITE(user_data)
  355. ;
  356. #undef CURRENT_CLASS
  357. #define CURRENT_CLASS cg::ComputingGraph::Options::SeqOpt
  358. py::class_<cg::ComputingGraph::Options::SeqOpt>(PyComputingGraphOptions, "SeqOpt")
  359. DEF_READWRITE(enable_mem_plan_opt)
  360. DEF_READWRITE(enable_mem_reuse_alloc)
  361. DEF_READWRITE(enable_seq_comp_node_opt);
  362. #undef CURRENT_CLASS
  363. #define CURRENT_CLASS cg::ComputingGraph::Options::GraphOpt
  364. py::class_<cg::ComputingGraph::Options::GraphOpt>(PyComputingGraphOptions, "GraphOpt")
  365. DEF_READWRITE(jit)
  366. DEF_READWRITE(tensorrt);
  367. #undef CURRENT_CLASS
  368. #define CURRENT_CLASS cg::ComputingGraph::Options::SublinearMemConfig
  369. py::class_<cg::ComputingGraph::Options::SublinearMemConfig>(PyComputingGraphOptions, "SublinearMemConfig")
  370. DEF_READWRITE(thresh_nr_try)
  371. DEF_READWRITE(genetic_nr_iter)
  372. DEF_READWRITE(genetic_pool_size)
  373. DEF_READWRITE(lb_memory)
  374. DEF_READWRITE(num_worker);
  375. #undef CURRENT_CLASS
  376. auto common = rel_import("common", m, 1);
  377. common.def("invoke_op", [](const OpDef& def, const std::vector<cg::VarNode*> inputs, cg::ComputingGraph* graph) {
  378. cg::VarNodeArray vinputs(inputs.begin(), inputs.end());
  379. auto opr = OpDef::apply_on_var_node(def, vinputs);
  380. auto outputs = opr->usable_output();
  381. return to_tuple(outputs);
  382. },
  383. py::arg(), py::arg(), py::arg("graph") = py::none());
  384. auto input_callback = [](auto callback,
  385. const CompNode& comp_node,
  386. const DType& dtype,
  387. const TensorShape& shape,
  388. const std::vector<cg::VarNode*>& inputs,
  389. cg::ComputingGraph* graph) {
  390. if (!graph) {
  391. graph = inputs[0]->owner_graph();
  392. }
  393. SymbolVarArray sinputs;
  394. for (auto i : inputs) {
  395. sinputs.emplace_back(i);
  396. }
  397. static_assert(!std::is_reference<decltype(callback)>::value);
  398. auto soutputs = opr::InputCallback::make(*graph, std::move(callback), comp_node, dtype, shape, sinputs);
  399. std::vector<VarNode*> outputs;
  400. outputs.reserve(soutputs.size());
  401. for (auto i : soutputs) {
  402. outputs.push_back(i.node());
  403. }
  404. return outputs;
  405. };
  406. m.def("make_shared", [](cg::ComputingGraph* graph, const DeviceTensorND& data) {
  407. return opr::SharedDeviceTensor::make(*graph, std::make_shared<DeviceTensorND>(data)).node();
  408. });
  409. m.def("make_const", [](cg::ComputingGraph* graph, py::array data, CompNode cn, DType dtype) {
  410. if (!cn.valid()) {
  411. cn = CompNode::load(get_default_device());
  412. }
  413. auto hv = npy::np2tensor(data.ptr(), npy::Meth::borrow(cn), dtype);
  414. return opr::ImmutableTensor::make(*graph, hv, OperatorNodeConfig(cn)).node();
  415. });
  416. m.def("make_h2d", [](cg::ComputingGraph& graph, CompNode cn, DType dtype, TensorShape shape, std::optional<std::string> name) {
  417. if (!cn.valid()) {
  418. throw py::type_error("device must be valid");
  419. }
  420. if (!dtype.valid()) {
  421. throw py::type_error("dtype must be valid");
  422. }
  423. OperatorNodeConfig config;
  424. if (name) {
  425. config.name(*name);
  426. }
  427. return opr::Host2DeviceCopy::make(graph, std::make_shared<HostTensorND>(cn, shape, dtype), config).node();
  428. }, py::arg(), py::arg(), py::arg(), py::arg() = py::none(), py::arg() = py::none());
  429. m.def("_replace_vars", &_replace_vars,py::arg(),py::arg(),py::arg());
  430. m.def("_replace_oprs", &_replace_oprs,py::arg(),py::arg(),py::arg());
  431. m.def("_set_priority_to_id",&_set_priority_to_id,py::arg());
  432. m.def("input_callback", [input_callback](std::function<DeviceTensorND(void)> callback,
  433. const CompNode& comp_node,
  434. const DType& dtype,
  435. const TensorShape& shape,
  436. const std::vector<cg::VarNode*>& inputs,
  437. cg::ComputingGraph* graph) {
  438. return input_callback([f=std::move(callback)](){py::gil_scoped_acquire _; return f();}, comp_node, dtype, shape, inputs, graph);
  439. },
  440. py::arg(), py::arg(), py::arg(), py::arg() = py::none(), py::arg() = py::tuple(), py::arg("graph") = py::none());
  441. m.def("input_callback", [input_callback](std::shared_ptr<Rendezvous<DeviceTensorND>> p,
  442. const CompNode& comp_node,
  443. const DType& dtype,
  444. const TensorShape& shape,
  445. const std::vector<cg::VarNode*>& inputs,
  446. cg::ComputingGraph* graph) {
  447. auto f = [p]() -> DeviceTensorND {
  448. return p->get();
  449. };
  450. return input_callback(std::move(f), comp_node, dtype, shape, inputs, graph);
  451. },
  452. py::arg(), py::arg(), py::arg(), py::arg() = py::none(), py::arg() = py::tuple(), py::arg("graph") = py::none());
  453. auto output_callback = [](auto callback, const std::vector<cg::VarNode*>& inputs,
  454. std::shared_ptr<RendezvousBase> r = {}, bool borrow = false, bool prefer_host_value = false) {
  455. if (r) {
  456. mgb_assert(inputs.size());
  457. auto cg = inputs[0]->owner_graph();
  458. cg->options().user_data.get_user_data_or_create<WeakRendezvousArray>()
  459. ->emplace_back(r);
  460. }
  461. SymbolVarArray sinputs;
  462. for (auto i : inputs) {
  463. sinputs.emplace_back(i);
  464. }
  465. static_assert(!std::is_reference<decltype(callback)>::value);
  466. opr::OutputCallback::Param param{std::move(callback), borrow, prefer_host_value};
  467. auto output = opr::OutputCallback::make(std::move(param), sinputs);
  468. return output.node();
  469. };
  470. m.def("output_callback", [output_callback](std::function<void(DeviceTensorND)> callback, std::vector<cg::VarNode*> inputs) {
  471. auto f = [f=std::move(callback)](DeviceTensorND dv) {
  472. auto task = [f=std::move(f), dv=std::move(dv)]() {
  473. f(dv);
  474. };
  475. py_task_q.add_task(std::move(task));
  476. };
  477. return output_callback(std::move(f), std::move(inputs));
  478. });
  479. m.def("output_callback", [output_callback](std::shared_ptr<Rendezvous<DeviceTensorND>> p, std::vector<cg::VarNode*> inputs) {
  480. auto f = [p](DeviceTensorND dv) {
  481. p->set(std::move(dv));
  482. };
  483. return output_callback(std::move(f), std::move(inputs), p);
  484. });
  485. m.def("value_output_callback", [output_callback](std::shared_ptr<Rendezvous<HostNDWithEvent>> p, std::vector<cg::VarNode*> inputs) {
  486. auto f = [p](DeviceTensorND dv) {
  487. HostNDWithEvent hv_with_event;
  488. hv_with_event.first.copy_from(dv);
  489. hv_with_event.second = dv.comp_node().create_event();
  490. hv_with_event.second->record();
  491. p->set(std::move(hv_with_event));
  492. };
  493. return output_callback(std::move(f), std::move(inputs), p, true, true);
  494. });
  495. m.def("attr_output_callback", [output_callback](std::shared_ptr<Rendezvous<TensorAttr>> p, std::vector<cg::VarNode*> inputs) {
  496. auto f = [p](DeviceTensorND dv) {
  497. p->set(TensorAttr{TensorLayout{dv.shape(), dv.dtype()}, dv.comp_node()});
  498. };
  499. return output_callback(std::move(f), std::move(inputs), p, true);
  500. });
  501. }

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台