You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

graph_rt.cpp 25 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578
  1. /**
  2. * \file imperative/python/src/graph_rt.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "./graph_rt.h"
  12. #include "megbrain/graph/cg.h"
  13. #include "megbrain/serialization/serializer.h"
  14. #include "megbrain/imperative/opr_utility.h"
  15. #include "megbrain/opr/io.h"
  16. #include "megbrain/opr/utility.h"
  17. #include "megbrain/opr/basic_arith.h"
  18. #include "megbrain/imperative.h"
  19. #include "./helper.h"
  20. #include "megbrain/plugin/profiler.h"
  21. #include "./common.h"
  22. #include "megbrain/gopt/inference.h"
  23. namespace py = pybind11;
  24. using namespace mgb;
  25. using namespace imperative;
  26. namespace ser = mgb::serialization;
  27. using _OptimizeForInferenceOptions = mgb::gopt::OptimizeForInferenceOptions;
  28. using _LayoutTransform = _OptimizeForInferenceOptions::LayoutTransform;
  29. namespace {
  30. class _CompGraphProfilerImpl {
  31. std::shared_ptr<ComputingGraph> m_comp_graph;
  32. GraphProfiler m_profiler;
  33. public:
  34. _CompGraphProfilerImpl(std::shared_ptr<ComputingGraph> cg):
  35. m_comp_graph{cg},
  36. m_profiler{m_comp_graph.get()}
  37. {
  38. }
  39. std::string _get_result() {
  40. auto json = m_profiler.to_json_full(
  41. m_comp_graph->current_comp_seq());
  42. return json->to_string();
  43. }
  44. };
  45. struct WeakRendezvousArray:
  46. public std::vector<std::weak_ptr<RendezvousBase>>,
  47. public UserDataContainer::UserData {
  48. MGB_TYPEINFO_OBJ_DECL;
  49. };
  50. MGB_TYPEINFO_OBJ_IMPL(WeakRendezvousArray);
  51. }
  52. #define DEF_READWRITE(name) .def_readwrite(#name, &CURRENT_CLASS::name)
  53. template<typename T>
  54. auto def_rendezvous(py::object m, const char* name) {
  55. return py::class_<Rendezvous<T>, std::shared_ptr<Rendezvous<T>>>(m, name)
  56. .def(py::init([](){return Rendezvous<T>::make();}))
  57. .def("set", [](Rendezvous<T>& r, T v) {r.set(std::move(v));})
  58. .def("get", [](Rendezvous<T>& r) {return r.get();}, py::call_guard<py::gil_scoped_release>())
  59. .def("drop", &Rendezvous<T>::drop)
  60. .def("reset", &Rendezvous<T>::reset)
  61. .def("set_exception", [](Rendezvous<T>& r, std::string&& message) {
  62. r.set_exception(std::make_exception_ptr(
  63. std::runtime_error(std::move(message))));
  64. });
  65. }
  66. using TensorAttr = LogicalTensorDesc;
  67. using HostNDWithEvent = std::pair<HostTensorND, std::shared_ptr<CompNode::Event>>;
  68. std::vector<mgb::cg::VarNode*> _replace_vars(const std::vector<mgb::cg::VarNode*>& repl_src,
  69. const std::vector<mgb::cg::VarNode*>& repl_dst,
  70. const std::vector<mgb::cg::VarNode*>& vars) {
  71. mgb::ThinHashMap<SymbolVar, SymbolVar> varmap;
  72. for (size_t i = 0; i < repl_src.size(); ++i) {
  73. varmap[SymbolVar(repl_src[i])] = SymbolVar(repl_dst[i]);
  74. }
  75. SymbolVarArray symvars(vars.begin(), vars.end());
  76. auto sym_result = mgb::cg::replace_vars(symvars, varmap);
  77. std::vector<mgb::cg::VarNode*> result;
  78. for (auto symvar : sym_result){
  79. result.push_back(symvar.node());
  80. }
  81. return result;
  82. }
  83. typedef std::vector<mgb::cg::OperatorNodeBase*> OperatorArray;
  84. std::vector<mgb::cg::VarNode*> _replace_oprs(const OperatorArray& repl_src,
  85. const OperatorArray& repl_dst,
  86. const std::vector<mgb::cg::VarNode*>& vars) {
  87. mgb::ThinHashMap<mgb::cg::OperatorNodeBase*, mgb::cg::OperatorNodeBase*>
  88. oprmap;
  89. for (size_t i = 0; i < repl_src.size(); ++i) {
  90. oprmap[repl_src[i]] = repl_dst[i];
  91. }
  92. const SymbolVarArray symvars(vars.begin(), vars.end());
  93. auto sym_result = mgb::cg::replace_oprs(symvars, oprmap);
  94. std::vector<mgb::cg::VarNode*> result;
  95. for (auto symvar : sym_result){
  96. result.push_back(symvar.node());
  97. }
  98. return result;
  99. }
  100. void _set_priority_to_id(const std::vector<mgb::cg::VarNode*>& dest_vars) {
  101. auto on_opr = [](mgb::cg::OperatorNodeBase* opr) {
  102. if (opr->node_prop().attribute().priority == 0) {
  103. opr->node_prop().attribute().priority = opr->id();
  104. }
  105. };
  106. mgb::cg::DepOprIter dep_iter{on_opr};
  107. for (const auto& var : dest_vars) {
  108. dep_iter.add(SymbolVar(var));
  109. }
  110. }
  111. void init_graph_rt(py::module m) {
  112. static const std::unique_ptr<mgb::OprFootprint> _imperative_sm_opr_footprint_ptr{std::make_unique<mgb::OprFootprint>()};
  113. def_rendezvous<DeviceTensorND>(m, "DeviceTensorNDRendezvous");
  114. def_rendezvous<HostNDWithEvent>(m, "HostTensorNDRendezvous");
  115. def_rendezvous<TensorAttr>(m, "TensorAttrRendezvous");
  116. py::class_<cg::VarNode, GraphNodePtr<cg::VarNode>>(m, "VarNode")
  117. .def_property_readonly("owner", [](cg::VarNode* v) {return v->owner_opr();})
  118. .def_property_readonly("graph", [](cg::VarNode* v) {return v->owner_graph();})
  119. .def_property("name", py::overload_cast<>(&VarNode::name, py::const_),
  120. py::overload_cast<std::string>(&VarNode::name))
  121. .def_property_readonly("dtype", [](cg::VarNode* v) {return v->dtype();})
  122. .def_property_readonly("comp_node", [](cg::VarNode* v) {return v->comp_node();})
  123. .def_property_readonly("shape", [](cg::VarNode* v) -> const TensorShape* {
  124. auto&& mgr = v->owner_graph()->static_infer_manager();
  125. return mgr.infer_shape_fallible(v);
  126. })
  127. .def_property_readonly("value", [](cg::VarNode* v) -> py::object {
  128. auto&& mgr = v->owner_graph()->static_infer_manager();
  129. auto&& type = mgr.get_infer_type(v);
  130. using InferType = cg::static_infer::InferType;
  131. if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) {
  132. return py::none();
  133. }
  134. auto* val = mgr.infer_value_fallible(v);
  135. if (!val) {
  136. return py::none();
  137. }
  138. return py::cast(*val).attr("numpy")();
  139. })
  140. .def_property_readonly("id",[](cg::VarNode* v){
  141. return (v->id());
  142. })
  143. .def("__repr__", [](cg::VarNode* v) {
  144. return "Var:" + v->name();
  145. });
  146. py::class_<cg::OperatorNodeBase, GraphNodePtr<cg::OperatorNodeBase>>(m, "OperatorNode")
  147. .def_property_readonly("graph", [](cg::OperatorNodeBase* opr) {return opr->owner_graph();})
  148. .def_property("name", py::overload_cast<>(&cg::OperatorNodeBase::name, py::const_),
  149. py::overload_cast<std::string>(&cg::OperatorNodeBase::name))
  150. .def_property_readonly("inputs", [](cg::OperatorNodeBase* opr) {
  151. return to_tuple(opr->input());
  152. })
  153. .def_property_readonly("outputs", [](cg::OperatorNodeBase* opr) {
  154. return to_tuple(opr->usable_output());
  155. })
  156. .def_property_readonly("id",[](cg::OperatorNodeBase* opr){
  157. return opr->id();
  158. })
  159. .def_property_readonly("params",[](cg::OperatorNodeBase* opr){
  160. return _imperative_sm_opr_footprint_ptr->calc_footprint(opr).param->to_string();
  161. })
  162. .def_property_readonly("type",[](cg::OperatorNodeBase* opr){
  163. return opr->dyn_typeinfo()->name;
  164. })
  165. .def("__repr__", [](cg::OperatorNodeBase* opr){
  166. return "Opr:" + opr->name();
  167. });
  168. py::class_<cg::AsyncExecutable>(m, "AsyncExecutable")
  169. .def("execute", &cg::AsyncExecutable::execute, py::call_guard<py::gil_scoped_release>())
  170. .def("wait", &cg::AsyncExecutable::wait, py::call_guard<py::gil_scoped_release>())
  171. // only used for exception handle
  172. .def_property_readonly("_all_rendezvous", [](cg::AsyncExecutable* exec) {
  173. auto ud = exec->owner_graph()->options().user_data
  174. .get_user_data<WeakRendezvousArray>();
  175. std::vector<std::shared_ptr<RendezvousBase>> ret;
  176. if (ud.second) {
  177. for (auto&& r: *ud.first[0]) {
  178. if (auto p = r.lock()) {
  179. ret.emplace_back(std::move(p));
  180. }
  181. }
  182. }
  183. return ret;
  184. });
  185. auto PyComputingGraph = py::class_<cg::ComputingGraph, std::shared_ptr<cg::ComputingGraph>>(m, "ComputingGraph")
  186. .def(py::init(py::overload_cast<>(&cg::ComputingGraph::make)))
  187. .def("compile", [](cg::ComputingGraph& graph, const std::vector<cg::VarNode*>& dest_vars) {
  188. mgb_assert(!dest_vars.empty());
  189. cg::ComputingGraph::OutputSpec spec;
  190. for (auto v : dest_vars) {
  191. spec.emplace_back(v, nullptr);
  192. }
  193. return graph.compile(spec);
  194. })
  195. .def_property_readonly("options", py::overload_cast<>(&cg::ComputingGraph::options));
  196. py::class_<_CompGraphProfilerImpl, std::shared_ptr<_CompGraphProfilerImpl>>(m, "GraphProfiler")
  197. .def(py::init([](std::shared_ptr<ComputingGraph> graph) {
  198. return std::make_shared<_CompGraphProfilerImpl>(graph);
  199. }))
  200. .def("get", [](_CompGraphProfilerImpl& profiler) { return profiler._get_result(); });
  201. auto GraphOptimizeOptions = py::class_<_OptimizeForInferenceOptions>(m, "GraphOptimizeOptions")
  202. .def(py::init())
  203. .def_readwrite("f16_io_f32_comp", &_OptimizeForInferenceOptions::f16_io_f32_comp)
  204. .def_readwrite("f16_io_comp", &_OptimizeForInferenceOptions::f16_io_comp)
  205. .def_readwrite("fuse_conv_bias_nonlinearity", &_OptimizeForInferenceOptions::fuse_conv_bias_nonlinearity)
  206. .def_readwrite("fuse_conv_bias_with_z", &_OptimizeForInferenceOptions::fuse_conv_bias_with_z)
  207. .def_readwrite("layout_transform", &_OptimizeForInferenceOptions::layout_transform)
  208. ;
  209. py::enum_<_LayoutTransform>(GraphOptimizeOptions, "LayoutTransform")
  210. .value("DEFAULT", _LayoutTransform::DEFAULT)
  211. .value("NCHW4", _LayoutTransform::NCHW4)
  212. .value("NHWCD4", _LayoutTransform::NHWCD4)
  213. .value("NCHW88", _LayoutTransform::NCHW88)
  214. .value("NCHW44", _LayoutTransform::NCHW44)
  215. .value("NCHW44_DOT", _LayoutTransform::NCHW44_DOT)
  216. .value("NCHW32", _LayoutTransform::NCHW32)
  217. .value("CHWN4", _LayoutTransform::CHWN4)
  218. .export_values()
  219. ;
  220. m.def("optimize_for_inference", [](const VarNodeArray& dest_vars, const _OptimizeForInferenceOptions& opt) {
  221. SymbolVarArray symvars(dest_vars.begin(), dest_vars.end());
  222. auto res_symvars = mgb::gopt::optimize_for_inference(symvars, opt);
  223. VarNodeArray vars;
  224. for (auto& si: res_symvars)
  225. vars.push_back(si.node());
  226. return vars;
  227. });
  228. m.def("get_info_for_strip", [](const std::vector<VarNode*>& dest_vars) {
  229. std::unordered_set<const char*> opr_types, dtype_names, elemwise_modes;
  230. auto on_opr = [&](cg::OperatorNodeBase *opr) {
  231. if (ser::GraphDumper::should_remove_in_dump(opr))
  232. return;
  233. opr_types.insert(opr->dyn_typeinfo()->name);
  234. for (auto i : opr->output())
  235. dtype_names.insert(i->dtype().name());
  236. if (opr->same_type<opr::Elemwise>()) {
  237. auto mode = opr->cast_final<opr::Elemwise>().param().mode;
  238. elemwise_modes.insert(
  239. megdnn::Elemwise::ModeTrait::from_mode(mode).name);
  240. }
  241. };
  242. cg::DepOprIter opr_iter{on_opr};
  243. for (auto i : dest_vars)
  244. opr_iter.add(i->owner_opr());
  245. auto to_json = [](const std::unordered_set<const char*> &v) {
  246. std::vector<std::string> vs(v.begin(), v.end());
  247. std::sort(vs.begin(), vs.end());
  248. auto ret = json::Array::make();
  249. for (auto &&i : vs)
  250. ret->add(json::String::make(i));
  251. return ret;
  252. };
  253. return json::Object::make({
  254. {"opr_types", to_json(opr_types)},
  255. {"dtypes", to_json(dtype_names)},
  256. {"elemwise_modes", to_json(elemwise_modes)},
  257. })->to_string();
  258. });
  259. m.def("dump_graph", [](
  260. const std::vector<VarNode*>& dest_vars,
  261. int keep_var_name,
  262. bool keep_param_name,
  263. bool keep_opr_priority,
  264. py::list& stat,
  265. py::list& inputs,
  266. py::list& outputs,
  267. py::list& params
  268. ) {
  269. std::vector<uint8_t> buf;
  270. auto dumper = ser::GraphDumper::make(ser::OutputFile::make_vector_proxy(&buf));
  271. SymbolVarArray symvars(dest_vars.begin(), dest_vars.end());
  272. ser::GraphDumper::DumpConfig config{keep_var_name, keep_param_name,
  273. keep_opr_priority};
  274. auto rst = dumper->dump(symvars, config);
  275. for (auto i : rst.inputs) {
  276. inputs.append(py::cast(i));
  277. }
  278. for (auto i : rst.outputs) {
  279. outputs.append(py::cast(i));
  280. }
  281. for (auto i : rst.params) {
  282. params.append(py::cast(i));
  283. }
  284. auto rst_stat =
  285. std::vector{rst.nr_opr, rst.tot_bytes, rst.tensor_value_bytes,
  286. static_cast<size_t>(rst.content_hash)};
  287. for (auto i : rst_stat) {
  288. stat.append(py::cast(i));
  289. }
  290. return py::bytes(reinterpret_cast<const char*>(&buf[0]), buf.size());
  291. });
  292. m.def("load_graph", [](
  293. std::string& buf,
  294. py::list& output_var_map,
  295. py::list& output_var_list
  296. ) {
  297. auto file = ser::InputFile::make_mem_proxy(buf.c_str(), buf.length());
  298. auto format = ser::GraphLoader::identify_graph_dump_format(*file);
  299. auto loader = ser::GraphLoader::make(std::move(file), format.val());
  300. ser::GraphLoader::LoadConfig config;
  301. auto rst = loader->load(config);
  302. for (auto i : rst.output_var_map) {
  303. output_var_map.append(py::make_tuple(i.first, i.second.node()));
  304. }
  305. for (auto i : rst.output_var_list) {
  306. output_var_list.append(i.node());
  307. }
  308. std::unordered_map<HostTensorND*, const std::string*> tensor2name;
  309. for (const auto& pair : rst.tensor_map) {
  310. tensor2name[pair.second.get()] = &pair.first;
  311. }
  312. auto cb = [&tensor2name, graph=rst.graph](cg::OperatorNodeBase* opr) {
  313. if (!opr->same_type<opr::Host2DeviceCopy>())
  314. return;
  315. auto& h2d = opr->cast_final_safe<opr::Host2DeviceCopy>();
  316. auto it = tensor2name.find(h2d.host_data().get());
  317. mgb_throw_if(it == tensor2name.end(), GraphError,
  318. "unbound Host2DeviceCopy in loaded graph");
  319. h2d.output(0)->name(*it->second);
  320. };
  321. cg::DepOprIter iter{cb};
  322. for (const auto& var : rst.output_var_list) {
  323. iter.add(var);
  324. }
  325. return rst.graph;
  326. });
  327. #define CURRENT_CLASS cg::ComputingGraph::Options
  328. auto PyComputingGraphOptions = py::class_<cg::ComputingGraph::Options>(PyComputingGraph, "Options")
  329. // DEF_READWRITE(opr_attribute)
  330. DEF_READWRITE(seq_opt)
  331. DEF_READWRITE(graph_opt)
  332. DEF_READWRITE(graph_opt_level)
  333. DEF_READWRITE(log_level)
  334. DEF_READWRITE(async_exec_level)
  335. DEF_READWRITE(force_dynamic_alloc)
  336. DEF_READWRITE(var_sanity_check_first_run)
  337. DEF_READWRITE(allocate_static_mem_after_graph_compile)
  338. DEF_READWRITE(fake_next_exec)
  339. DEF_READWRITE(enable_sublinear_memory_opt)
  340. DEF_READWRITE(no_profiling_on_shape_change)
  341. DEF_READWRITE(enable_var_mem_defragment)
  342. DEF_READWRITE(enable_grad_var_static_reshape)
  343. DEF_READWRITE(enable_memory_swap)
  344. DEF_READWRITE(comp_node_seq_record_level)
  345. DEF_READWRITE(no_force_inplace)
  346. DEF_READWRITE(sublinear_mem_config)
  347. // DEF_READWRITE(eager_evaluation)
  348. // DEF_READWRITE(imperative_proxy_graph)
  349. // DEF_READWRITE(extra_vardeps)
  350. // DEF_READWRITE(user_data)
  351. ;
  352. #undef CURRENT_CLASS
  353. #define CURRENT_CLASS cg::ComputingGraph::Options::SeqOpt
  354. py::class_<cg::ComputingGraph::Options::SeqOpt>(PyComputingGraphOptions, "SeqOpt")
  355. DEF_READWRITE(enable_mem_plan_opt)
  356. DEF_READWRITE(enable_mem_reuse_alloc)
  357. DEF_READWRITE(enable_seq_comp_node_opt);
  358. #undef CURRENT_CLASS
  359. #define CURRENT_CLASS cg::ComputingGraph::Options::GraphOpt
  360. py::class_<cg::ComputingGraph::Options::GraphOpt>(PyComputingGraphOptions, "GraphOpt")
  361. DEF_READWRITE(jit)
  362. DEF_READWRITE(tensorrt);
  363. #undef CURRENT_CLASS
  364. #define CURRENT_CLASS cg::ComputingGraph::Options::SublinearMemConfig
  365. py::class_<cg::ComputingGraph::Options::SublinearMemConfig>(PyComputingGraphOptions, "SublinearMemConfig")
  366. DEF_READWRITE(thresh_nr_try)
  367. DEF_READWRITE(genetic_nr_iter)
  368. DEF_READWRITE(genetic_pool_size)
  369. DEF_READWRITE(lb_memory)
  370. DEF_READWRITE(num_worker);
  371. #undef CURRENT_CLASS
  372. auto common = rel_import("common", m, 1);
  373. common.def("invoke_op", [](const OpDef& def, const std::vector<cg::VarNode*> inputs, cg::ComputingGraph* graph) {
  374. cg::VarNodeArray vinputs(inputs.begin(), inputs.end());
  375. return to_tuple(OpDef::apply_on_var_node(def, vinputs));
  376. },
  377. py::arg(), py::arg(), py::arg("graph") = py::none());
  378. auto input_callback = [](auto callback,
  379. const CompNode& comp_node,
  380. const DType& dtype,
  381. const TensorShape& shape,
  382. const std::vector<cg::VarNode*>& inputs,
  383. cg::ComputingGraph* graph,
  384. bool use_static_shape) {
  385. if (!graph) {
  386. graph = inputs[0]->owner_graph();
  387. }
  388. SymbolVarArray sinputs;
  389. for (auto i : inputs) {
  390. sinputs.emplace_back(i);
  391. }
  392. static_assert(!std::is_reference<decltype(callback)>::value);
  393. auto soutputs = opr::InputCallback::make(*graph, std::move(callback),
  394. comp_node, dtype, shape,
  395. sinputs, use_static_shape);
  396. std::vector<VarNode*> outputs;
  397. outputs.reserve(soutputs.size());
  398. for (auto i : soutputs) {
  399. outputs.push_back(i.node());
  400. }
  401. return outputs;
  402. };
  403. m.def("make_shared", [](cg::ComputingGraph* graph, const DeviceTensorND& data) {
  404. return opr::SharedDeviceTensor::make(*graph, std::make_shared<DeviceTensorND>(data)).node();
  405. });
  406. m.def("make_const", [](cg::ComputingGraph* graph, py::array data, CompNode cn, DType dtype) {
  407. if (!cn.valid()) {
  408. cn = CompNode::load(get_default_device());
  409. }
  410. auto hv = npy::np2tensor(data.ptr(), npy::Meth::borrow(cn), dtype);
  411. return opr::ImmutableTensor::make(*graph, hv, OperatorNodeConfig(cn)).node();
  412. });
  413. m.def("make_h2d", [](cg::ComputingGraph& graph, CompNode cn, DType dtype, TensorShape shape, std::optional<std::string> name) {
  414. if (!cn.valid()) {
  415. throw py::type_error("device must be valid");
  416. }
  417. if (!dtype.valid()) {
  418. throw py::type_error("dtype must be valid");
  419. }
  420. OperatorNodeConfig config;
  421. if (name) {
  422. config.name(*name);
  423. }
  424. return opr::Host2DeviceCopy::make(graph, std::make_shared<HostTensorND>(cn, shape, dtype), config).node();
  425. }, py::arg(), py::arg(), py::arg(), py::arg() = py::none(), py::arg() = py::none());
  426. m.def("_replace_vars", &_replace_vars,py::arg(),py::arg(),py::arg());
  427. m.def("_replace_oprs", &_replace_oprs,py::arg(),py::arg(),py::arg());
  428. m.def("_set_priority_to_id",&_set_priority_to_id,py::arg());
  429. m.def("input_callback", [input_callback](std::function<DeviceTensorND(void)> callback,
  430. const CompNode& comp_node,
  431. const DType& dtype,
  432. const TensorShape& shape,
  433. const std::vector<cg::VarNode*>& inputs,
  434. cg::ComputingGraph* graph,
  435. bool use_static_shape) {
  436. return input_callback(
  437. [f=std::move(callback)](){py::gil_scoped_acquire _; return f();},
  438. comp_node, dtype, shape, inputs, graph, use_static_shape);
  439. },
  440. py::arg(), py::arg(), py::arg(), py::arg() = py::none(), py::arg() = py::tuple(),
  441. py::arg("graph") = py::none(), py::arg("use_static_shape") = false);
  442. m.def("input_callback", [input_callback](std::shared_ptr<Rendezvous<DeviceTensorND>> p,
  443. const CompNode& comp_node,
  444. const DType& dtype,
  445. const TensorShape& shape,
  446. const std::vector<cg::VarNode*>& inputs,
  447. cg::ComputingGraph* graph,
  448. bool use_static_shape) {
  449. auto f = [p]() -> DeviceTensorND {
  450. return p->get();
  451. };
  452. return input_callback(std::move(f), comp_node, dtype, shape, inputs, graph, use_static_shape);
  453. },
  454. py::arg(), py::arg(), py::arg(), py::arg() = py::none(), py::arg() = py::tuple(),
  455. py::arg("graph") = py::none(), py::arg("use_static_shape") = false);
  456. auto output_callback = [](auto callback, const std::vector<cg::VarNode*>& inputs,
  457. std::shared_ptr<RendezvousBase> r = {}, bool borrow = false, bool prefer_host_value = false) {
  458. if (r) {
  459. mgb_assert(inputs.size());
  460. auto cg = inputs[0]->owner_graph();
  461. cg->options().user_data.get_user_data_or_create<WeakRendezvousArray>()
  462. ->emplace_back(r);
  463. }
  464. SymbolVarArray sinputs;
  465. for (auto i : inputs) {
  466. sinputs.emplace_back(i);
  467. }
  468. static_assert(!std::is_reference<decltype(callback)>::value);
  469. opr::OutputCallback::Param param{std::move(callback), borrow, prefer_host_value};
  470. auto output = opr::OutputCallback::make(std::move(param), sinputs);
  471. return output.node();
  472. };
  473. m.def("output_callback", [output_callback](std::function<void(DeviceTensorND)> callback, std::vector<cg::VarNode*> inputs) {
  474. auto f = [f=std::move(callback)](DeviceTensorND dv) {
  475. auto task = [f=std::move(f), dv=std::move(dv)]() {
  476. f(dv);
  477. };
  478. py_task_q.add_task(std::move(task));
  479. };
  480. return output_callback(std::move(f), std::move(inputs));
  481. });
  482. m.def("output_callback", [output_callback](std::shared_ptr<Rendezvous<DeviceTensorND>> p, std::vector<cg::VarNode*> inputs) {
  483. auto f = [p](DeviceTensorND dv) {
  484. p->set(std::move(dv));
  485. };
  486. return output_callback(std::move(f), std::move(inputs), p);
  487. });
  488. m.def("value_output_callback", [output_callback](std::shared_ptr<Rendezvous<HostNDWithEvent>> p, std::vector<cg::VarNode*> inputs) {
  489. auto f = [p](DeviceTensorND dv) {
  490. HostNDWithEvent hv_with_event;
  491. hv_with_event.first.copy_from(dv);
  492. hv_with_event.second = dv.comp_node().create_event();
  493. hv_with_event.second->record();
  494. p->set(std::move(hv_with_event));
  495. };
  496. return output_callback(std::move(f), std::move(inputs), p, true, true);
  497. });
  498. m.def("attr_output_callback", [output_callback](std::shared_ptr<Rendezvous<TensorAttr>> p, std::vector<cg::VarNode*> inputs) {
  499. auto f = [p](DeviceTensorND dv) {
  500. p->set(TensorAttr{TensorLayout{dv.shape(), dv.dtype()}, dv.comp_node()});
  501. };
  502. return output_callback(std::move(f), std::move(inputs), p, true);
  503. });
  504. m.def("virtual_dep", [](std::vector<cg::VarNode*> inputs, std::string device) {
  505. auto&& graph = inputs[0]->owner_graph();
  506. VarNodeArray inps(inputs.begin(), inputs.end());
  507. cg::OperatorNodeConfig config;
  508. if (device.length() > 0) {
  509. config.comp_node(CompNode::load(device));
  510. }
  511. cg::OperatorNodeBase* opr = graph->insert_opr(
  512. std::make_unique<mgb::opr::VirtualDep>(inps, config));
  513. return opr;
  514. });
  515. }

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台