|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """VGG16 backbone for SSD"""
-
- from mindspore import nn
- from .config_ssd_vgg16 import config
-
- pretrain_vgg_bn = config.pretrain_vgg_bn
- ssd_vgg_bn = config.ssd_vgg_bn
-
-
- def _get_key_mapper():
- vgg_key_num = [1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5]
- size = len(vgg_key_num)
-
- pretrain_vgg_bn_false = [0, 2, 5, 7, 10, 12, 14, 17, 19, 21, 24, 26, 28]
- pretrain_vgg_bn_true = [0, 3, 7, 10, 14, 17, 20, 24, 27, 30, 34, 37, 40]
- ssd_vgg_bn_false = [0, 2, 0, 2, 0, 2, 4, 0, 2, 4, 0, 2, 4]
- ssd_vgg_bn_true = [0, 3, 0, 3, 0, 3, 6, 0, 3, 6, 0, 3, 6]
-
- pretrain_vgg_keys = pretrain_vgg_bn_true if pretrain_vgg_bn else pretrain_vgg_bn_false
- ssd_vgg_keys = ssd_vgg_bn_true if ssd_vgg_bn else ssd_vgg_bn_false
-
- pretrain_vgg_keys = ['layers.' + str(pretrain_vgg_keys[i]) for i in range(size)]
- ssd_vgg_keys = ['b' + str(vgg_key_num[i]) + '.' + str(ssd_vgg_keys[i]) for i in range(size)]
-
- return {pretrain_vgg_keys[i]: ssd_vgg_keys[i] for i in range(size)}
-
-
- ssd_vgg_key_mapper = _get_key_mapper()
-
-
- def _make_layer(channels):
- in_channels = channels[0]
- layers = []
- for out_channels in channels[1:]:
- layers.append(nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3))
- if ssd_vgg_bn:
- layers.append(nn.BatchNorm2d(out_channels))
- layers.append(nn.ReLU())
- in_channels = out_channels
- return nn.SequentialCell(layers)
-
-
- class VGG16(nn.Cell):
- def __init__(self):
- super(VGG16, self).__init__()
- self.b1 = _make_layer([3, 64, 64])
- self.b2 = _make_layer([64, 128, 128])
- self.b3 = _make_layer([128, 256, 256, 256])
- self.b4 = _make_layer([256, 512, 512, 512])
- self.b5 = _make_layer([512, 512, 512, 512])
-
- self.m1 = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode='SAME')
- self.m2 = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode='SAME')
- self.m3 = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode='SAME')
- self.m4 = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode='SAME')
- self.m5 = nn.MaxPool2d(kernel_size=3, stride=1, pad_mode='SAME')
-
- def construct(self, x):
- # block1
- x = self.b1(x)
- x = self.m1(x)
-
- # block2
- x = self.b2(x)
- x = self.m2(x)
-
- # block3
- x = self.b3(x)
- x = self.m3(x)
-
- # block4
- x = self.b4(x)
- block4 = x
- x = self.m4(x)
-
- # block5
- x = self.b5(x)
- x = self.m5(x)
-
- return block4, x
-
-
- def vgg16():
- return VGG16()
|