# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """VGG16 backbone for SSD""" from mindspore import nn from .config_ssd_vgg16 import config pretrain_vgg_bn = config.pretrain_vgg_bn ssd_vgg_bn = config.ssd_vgg_bn def _get_key_mapper(): vgg_key_num = [1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5] size = len(vgg_key_num) pretrain_vgg_bn_false = [0, 2, 5, 7, 10, 12, 14, 17, 19, 21, 24, 26, 28] pretrain_vgg_bn_true = [0, 3, 7, 10, 14, 17, 20, 24, 27, 30, 34, 37, 40] ssd_vgg_bn_false = [0, 2, 0, 2, 0, 2, 4, 0, 2, 4, 0, 2, 4] ssd_vgg_bn_true = [0, 3, 0, 3, 0, 3, 6, 0, 3, 6, 0, 3, 6] pretrain_vgg_keys = pretrain_vgg_bn_true if pretrain_vgg_bn else pretrain_vgg_bn_false ssd_vgg_keys = ssd_vgg_bn_true if ssd_vgg_bn else ssd_vgg_bn_false pretrain_vgg_keys = ['layers.' + str(pretrain_vgg_keys[i]) for i in range(size)] ssd_vgg_keys = ['b' + str(vgg_key_num[i]) + '.' + str(ssd_vgg_keys[i]) for i in range(size)] return {pretrain_vgg_keys[i]: ssd_vgg_keys[i] for i in range(size)} ssd_vgg_key_mapper = _get_key_mapper() def _make_layer(channels): in_channels = channels[0] layers = [] for out_channels in channels[1:]: layers.append(nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3)) if ssd_vgg_bn: layers.append(nn.BatchNorm2d(out_channels)) layers.append(nn.ReLU()) in_channels = out_channels return nn.SequentialCell(layers) class VGG16(nn.Cell): def __init__(self): super(VGG16, self).__init__() self.b1 = _make_layer([3, 64, 64]) self.b2 = _make_layer([64, 128, 128]) self.b3 = _make_layer([128, 256, 256, 256]) self.b4 = _make_layer([256, 512, 512, 512]) self.b5 = _make_layer([512, 512, 512, 512]) self.m1 = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode='SAME') self.m2 = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode='SAME') self.m3 = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode='SAME') self.m4 = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode='SAME') self.m5 = nn.MaxPool2d(kernel_size=3, stride=1, pad_mode='SAME') def construct(self, x): # block1 x = self.b1(x) x = self.m1(x) # block2 x = self.b2(x) x = self.m2(x) # block3 x = self.b3(x) x = self.m3(x) # block4 x = self.b4(x) block4 = x x = self.m4(x) # block5 x = self.b5(x) x = self.m5(x) return block4, x def vgg16(): return VGG16()