You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

vgg16.py 3.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899
  1. # Copyright 2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """VGG16 backbone for SSD"""
  16. from mindspore import nn
  17. from .config_ssd_vgg16 import config
  18. pretrain_vgg_bn = config.pretrain_vgg_bn
  19. ssd_vgg_bn = config.ssd_vgg_bn
  20. def _get_key_mapper():
  21. vgg_key_num = [1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5]
  22. size = len(vgg_key_num)
  23. pretrain_vgg_bn_false = [0, 2, 5, 7, 10, 12, 14, 17, 19, 21, 24, 26, 28]
  24. pretrain_vgg_bn_true = [0, 3, 7, 10, 14, 17, 20, 24, 27, 30, 34, 37, 40]
  25. ssd_vgg_bn_false = [0, 2, 0, 2, 0, 2, 4, 0, 2, 4, 0, 2, 4]
  26. ssd_vgg_bn_true = [0, 3, 0, 3, 0, 3, 6, 0, 3, 6, 0, 3, 6]
  27. pretrain_vgg_keys = pretrain_vgg_bn_true if pretrain_vgg_bn else pretrain_vgg_bn_false
  28. ssd_vgg_keys = ssd_vgg_bn_true if ssd_vgg_bn else ssd_vgg_bn_false
  29. pretrain_vgg_keys = ['layers.' + str(pretrain_vgg_keys[i]) for i in range(size)]
  30. ssd_vgg_keys = ['b' + str(vgg_key_num[i]) + '.' + str(ssd_vgg_keys[i]) for i in range(size)]
  31. return {pretrain_vgg_keys[i]: ssd_vgg_keys[i] for i in range(size)}
  32. ssd_vgg_key_mapper = _get_key_mapper()
  33. def _make_layer(channels):
  34. in_channels = channels[0]
  35. layers = []
  36. for out_channels in channels[1:]:
  37. layers.append(nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3))
  38. if ssd_vgg_bn:
  39. layers.append(nn.BatchNorm2d(out_channels))
  40. layers.append(nn.ReLU())
  41. in_channels = out_channels
  42. return nn.SequentialCell(layers)
  43. class VGG16(nn.Cell):
  44. def __init__(self):
  45. super(VGG16, self).__init__()
  46. self.b1 = _make_layer([3, 64, 64])
  47. self.b2 = _make_layer([64, 128, 128])
  48. self.b3 = _make_layer([128, 256, 256, 256])
  49. self.b4 = _make_layer([256, 512, 512, 512])
  50. self.b5 = _make_layer([512, 512, 512, 512])
  51. self.m1 = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode='SAME')
  52. self.m2 = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode='SAME')
  53. self.m3 = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode='SAME')
  54. self.m4 = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode='SAME')
  55. self.m5 = nn.MaxPool2d(kernel_size=3, stride=1, pad_mode='SAME')
  56. def construct(self, x):
  57. # block1
  58. x = self.b1(x)
  59. x = self.m1(x)
  60. # block2
  61. x = self.b2(x)
  62. x = self.m2(x)
  63. # block3
  64. x = self.b3(x)
  65. x = self.m3(x)
  66. # block4
  67. x = self.b4(x)
  68. block4 = x
  69. x = self.m4(x)
  70. # block5
  71. x = self.b5(x)
  72. x = self.m5(x)
  73. return block4, x
  74. def vgg16():
  75. return VGG16()