|
|
|
@@ -244,7 +244,8 @@ class Lamb(Optimizer): |
|
|
|
>>> optim = nn.Lamb(params=net.trainable_params(), learning_rate=0.1) |
|
|
|
>>> |
|
|
|
>>> #2) Use parameter groups and set different values |
|
|
|
>>> poly_decay_lr = learning_rate_schedule.PolynomialDecayLR() |
|
|
|
>>> poly_decay_lr = learning_rate_schedule.PolynomialDecayLR(learning_rate=0.1, end_learning_rate=0.01, |
|
|
|
... decay_steps=4, power = 0.5) |
|
|
|
>>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params())) |
|
|
|
>>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params())) |
|
|
|
>>> group_params = [{'params': conv_params, 'weight_decay': 0.01}, |
|
|
|
|