| @@ -258,9 +258,8 @@ class Dense(Cell): | |||||
| >>> input = Tensor(np.array([[180, 234, 154], [244, 48, 247]]), mindspore.float32) | >>> input = Tensor(np.array([[180, 234, 154], [244, 48, 247]]), mindspore.float32) | ||||
| >>> net = nn.Dense(3, 4) | >>> net = nn.Dense(3, 4) | ||||
| >>> output = net(input) | >>> output = net(input) | ||||
| >>> print(output) | |||||
| [[ 1.1199665 1.6730378 -1.383349 -1.5148697 ] | |||||
| [ 3.0728707 0.0124917 -1.4012015 0.04354739 ]] | |||||
| >>> print(output.shape) | |||||
| (2, 4) | |||||
| """ | """ | ||||
| @cell_attr_register(attrs=['has_bias', 'activation', 'in_channels', 'out_channels']) | @cell_attr_register(attrs=['has_bias', 'activation', 'in_channels', 'out_channels']) | ||||
| @@ -154,7 +154,6 @@ class DenseBnAct(Cell): | |||||
| bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is | bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is | ||||
| same as input. The values of str refer to the function `initializer`. Default: 'zeros'. | same as input. The values of str refer to the function `initializer`. Default: 'zeros'. | ||||
| has_bias (bool): Specifies whether the layer uses a bias vector. Default: True. | has_bias (bool): Specifies whether the layer uses a bias vector. Default: True. | ||||
| activation (Cell): The regularization function applied to the output of the layer, eg. 'ReLU'. Default: None. | |||||
| has_bn (bool): Specifies to use batchnorm or not. Default: False. | has_bn (bool): Specifies to use batchnorm or not. Default: False. | ||||
| momentum (float): Momentum for moving average for batchnorm, must be [0, 1]. Default:0.9 | momentum (float): Momentum for moving average for batchnorm, must be [0, 1]. Default:0.9 | ||||
| eps (float): Term added to the denominator to improve numerical stability for batchnorm, should be greater | eps (float): Term added to the denominator to improve numerical stability for batchnorm, should be greater | ||||
| @@ -441,6 +441,7 @@ class GlobalBatchNorm(_BatchNorm): | |||||
| eps (float): A value added to the denominator for numerical stability. Default: 1e-5. | eps (float): A value added to the denominator for numerical stability. Default: 1e-5. | ||||
| momentum (float): A floating hyperparameter of the momentum for the | momentum (float): A floating hyperparameter of the momentum for the | ||||
| running_mean and running_var computation. Default: 0.9. | running_mean and running_var computation. Default: 0.9. | ||||
| affine (bool): A bool value. When set to True, gamma and beta can be learned. Default: True. | |||||
| gamma_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the gamma weight. | gamma_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the gamma weight. | ||||
| The values of str refer to the function `initializer` including 'zeros', 'ones', 'xavier_uniform', | The values of str refer to the function `initializer` including 'zeros', 'ones', 'xavier_uniform', | ||||
| 'he_uniform', etc. Default: 'ones'. | 'he_uniform', etc. Default: 'ones'. | ||||
| @@ -559,6 +559,9 @@ class Conv2dBnFoldQuant(Cell): | |||||
| padding (int): Implicit paddings on both sides of the input. Default: 0. | padding (int): Implicit paddings on both sides of the input. Default: 0. | ||||
| eps (float): Parameters for BatchNormal. Default: 1e-5. | eps (float): Parameters for BatchNormal. Default: 1e-5. | ||||
| momentum (float): Parameters for BatchNormal op. Default: 0.997. | momentum (float): Parameters for BatchNormal op. Default: 0.997. | ||||
| dilation (int): Specifies the dilation rate to use for dilated convolution. Default: 1. | |||||
| group (int): Splits filter into groups, `in_ channels` and `out_channels` must be | |||||
| divisible by the number of groups. Default: 1. | |||||
| has_bias (bool): Specifies whether the layer uses a bias vector. Default: False. | has_bias (bool): Specifies whether the layer uses a bias vector. Default: False. | ||||
| weight_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the | weight_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the | ||||
| convolution kernel. Default: 'normal'. | convolution kernel. Default: 'normal'. | ||||
| @@ -244,7 +244,8 @@ class Lamb(Optimizer): | |||||
| >>> optim = nn.Lamb(params=net.trainable_params(), learning_rate=0.1) | >>> optim = nn.Lamb(params=net.trainable_params(), learning_rate=0.1) | ||||
| >>> | >>> | ||||
| >>> #2) Use parameter groups and set different values | >>> #2) Use parameter groups and set different values | ||||
| >>> poly_decay_lr = learning_rate_schedule.PolynomialDecayLR() | |||||
| >>> poly_decay_lr = learning_rate_schedule.PolynomialDecayLR(learning_rate=0.1, end_learning_rate=0.01, | |||||
| ... decay_steps=4, power = 0.5) | |||||
| >>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params())) | >>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params())) | ||||
| >>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params())) | >>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params())) | ||||
| >>> group_params = [{'params': conv_params, 'weight_decay': 0.01}, | >>> group_params = [{'params': conv_params, 'weight_decay': 0.01}, | ||||
| @@ -3018,7 +3018,7 @@ class GetNext(PrimitiveWithInfer): | |||||
| >>> relu = P.ReLU() | >>> relu = P.ReLU() | ||||
| >>> result = relu(data).asnumpy() | >>> result = relu(data).asnumpy() | ||||
| >>> print(result.shape) | >>> print(result.shape) | ||||
| >>> (32, 1, 32, 32) | |||||
| (32, 1, 32, 32) | |||||
| """ | """ | ||||
| @prim_attr_register | @prim_attr_register | ||||