From: @chenmai1102 Reviewed-by: @guoqi1024,@oacjiewen Signed-off-by: @guoqi1024tags/v1.1.0
| @@ -114,13 +114,16 @@ Parameters for both training and evaluation can be set in config.py | |||
| ```python | |||
| 'num_epochs': 10, # total training epochs | |||
| 'batch_size': 64, # training batch size | |||
| 'cell': 'lstm', # the RNN architecture, can be 'vanilla', 'gru' and 'lstm'. | |||
| 'cell': 'gru', # the RNN architecture, can be 'vanilla', 'gru' and 'lstm'. | |||
| 'opt': 'adam', # the optimizer strategy, can be 'adam' or 'momentum' | |||
| 'ckpt_folder_path': './ckpt', # the path to save the checkpoints | |||
| 'preprocess_path': './preprocess', # the directory to save the processed data | |||
| 'preprocess' : 'false', # whethere to preprocess the data | |||
| 'data_path': './data/', # the path to store the splited data | |||
| 'lr': 1e-3, # the training learning rate | |||
| 'lstm_base_lr': 3e-3, # the training learning rate when using lstm as RNN cell | |||
| 'lstm_decay_rate': 0.9, # lr decay rate when using lstm as RNN cell | |||
| 'lstm_decay_epoch': 1, # lr decay epoch when using lstm as RNN cell | |||
| 'emb_path': './word2vec', # the directory to save the embedding file | |||
| 'embed_size': 300, # the dimension of the word embedding | |||
| 'save_checkpoint_steps': 149, # per step to save the checkpoint | |||
| @@ -137,7 +140,7 @@ Parameters for both training and evaluation can be set in config.py | |||
| | Dataset | Sentence polarity dataset v1.0 | Sentence polarity dataset v1.0 | | |||
| | batch_size | 64 | 64 | | |||
| | Accuracy | 0.78 | 0.78 | | |||
| | Speed | 78ms/step | 89ms/step | | |||
| | Speed | 25ms/step | 77ms/step | | |||
| ## [ModelZoo Homepage](#contents) | |||
| @@ -23,13 +23,16 @@ textrcnn_cfg = edict({ | |||
| 'neg_dir': 'data/rt-polaritydata/rt-polarity.neg', | |||
| 'num_epochs': 10, | |||
| 'batch_size': 64, | |||
| 'cell': 'lstm', | |||
| 'cell': 'gru', | |||
| 'opt': 'adam', | |||
| 'ckpt_folder_path': './ckpt', | |||
| 'preprocess_path': './preprocess', | |||
| 'preprocess': 'false', | |||
| 'data_path': './data/', | |||
| 'lr': 1e-3, | |||
| 'lstm_base_lr': 3e-3, | |||
| 'lstm_decay_rate': 0.9, | |||
| 'lstm_decay_epoch': 1, | |||
| 'emb_path': './word2vec', | |||
| 'embed_size': 300, | |||
| 'save_checkpoint_steps': 149, | |||
| @@ -45,16 +45,16 @@ class textrcnn(nn.Cell): | |||
| self.lstm = P.DynamicRNN(forget_bias=0.0) | |||
| self.w1_fw = Parameter( | |||
| np.random.uniform(-k, k, (self.embed_size + self.num_hiddens, 4 * self.num_hiddens)).astype( | |||
| np.float16), name="w1_fw") | |||
| self.b1_fw = Parameter(np.random.uniform(-k, k, (4 * self.num_hiddens)).astype(np.float16), | |||
| np.float32), name="w1_fw") | |||
| self.b1_fw = Parameter(np.random.uniform(-k, k, (4 * self.num_hiddens)).astype(np.float32), | |||
| name="b1_fw") | |||
| self.w1_bw = Parameter( | |||
| np.random.uniform(-k, k, (self.embed_size + self.num_hiddens, 4 * self.num_hiddens)).astype( | |||
| np.float16), name="w1_bw") | |||
| self.b1_bw = Parameter(np.random.uniform(-k, k, (4 * self.num_hiddens)).astype(np.float16), | |||
| np.float32), name="w1_bw") | |||
| self.b1_bw = Parameter(np.random.uniform(-k, k, (4 * self.num_hiddens)).astype(np.float32), | |||
| name="b1_bw") | |||
| self.h1 = Tensor(np.zeros(shape=(1, self.batch_size, self.num_hiddens)).astype(np.float16)) | |||
| self.c1 = Tensor(np.zeros(shape=(1, self.batch_size, self.num_hiddens)).astype(np.float16)) | |||
| self.h1 = Tensor(np.zeros(shape=(1, self.batch_size, self.num_hiddens)).astype(np.float32)) | |||
| self.c1 = Tensor(np.zeros(shape=(1, self.batch_size, self.num_hiddens)).astype(np.float32)) | |||
| if cell == "vanilla": | |||
| self.rnnW_fw = nn.Dense(self.num_hiddens, self.num_hiddens) | |||
| @@ -0,0 +1,29 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """training utils""" | |||
| from mindspore import dtype as mstype | |||
| from mindspore.nn.dynamic_lr import exponential_decay_lr | |||
| from mindspore import Tensor | |||
| def get_lr(cfg, dataset_size): | |||
| if cfg.cell == "lstm": | |||
| lr = exponential_decay_lr(cfg.lstm_base_lr, cfg.lstm_decay_rate, dataset_size * cfg.num_epochs, | |||
| dataset_size, | |||
| cfg.lstm_decay_epoch) | |||
| lr_ret = Tensor(lr, mstype.float32) | |||
| else: | |||
| lr_ret = cfg.lr | |||
| return lr_ret | |||
| @@ -29,6 +29,7 @@ from src.config import textrcnn_cfg as cfg | |||
| from src.dataset import create_dataset | |||
| from src.dataset import convert_to_mindrecord | |||
| from src.textrcnn import textrcnn | |||
| from src.utils import get_lr | |||
| set_seed(1) | |||
| @@ -50,25 +51,31 @@ if __name__ == '__main__': | |||
| os.mkdir(cfg.preprocess_path) | |||
| convert_to_mindrecord(cfg.embed_size, cfg.data_path, cfg.preprocess_path, cfg.emb_path) | |||
| if cfg.cell == "vanilla": | |||
| print("============ Precision is lower than expected when using vanilla RNN architecture ===========") | |||
| embedding_table = np.loadtxt(os.path.join(cfg.preprocess_path, "weight.txt")).astype(np.float32) | |||
| network = textrcnn(weight=Tensor(embedding_table), vocab_size=embedding_table.shape[0], \ | |||
| cell=cfg.cell, batch_size=cfg.batch_size) | |||
| cell=cfg.cell, batch_size=cfg.batch_size) | |||
| ds_train = create_dataset(cfg.preprocess_path, cfg.batch_size, cfg.num_epochs, True) | |||
| step_size = ds_train.get_dataset_size() | |||
| loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True) | |||
| lr = get_lr(cfg, step_size) | |||
| if cfg.opt == "adam": | |||
| opt = nn.Adam(params=network.trainable_params(), learning_rate=cfg.lr) | |||
| opt = nn.Adam(params=network.trainable_params(), learning_rate=lr) | |||
| elif cfg.opt == "momentum": | |||
| opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum) | |||
| opt = nn.Momentum(network.trainable_params(), lr, cfg.momentum) | |||
| loss_cb = LossMonitor() | |||
| model = Model(network, loss, opt, {'acc': Accuracy()}, amp_level="O3") | |||
| print("============== Starting Training ==============") | |||
| ds_train = create_dataset(cfg.preprocess_path, cfg.batch_size, cfg.num_epochs, True) | |||
| config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps, \ | |||
| keep_checkpoint_max=cfg.keep_checkpoint_max) | |||
| keep_checkpoint_max=cfg.keep_checkpoint_max) | |||
| ckpoint_cb = ModelCheckpoint(prefix=cfg.cell, directory=cfg.ckpt_folder_path, config=config_ck) | |||
| model.train(cfg.num_epochs, ds_train, callbacks=[ckpoint_cb, loss_cb]) | |||
| print("train success") | |||