|
|
|
@@ -20,7 +20,7 @@ import mindspore.context as context |
|
|
|
import mindspore.nn as nn |
|
|
|
from mindspore import Tensor |
|
|
|
from mindspore.ops import operations as P |
|
|
|
|
|
|
|
from mindspore.ops.operations import _inner_ops as inner |
|
|
|
|
|
|
|
class NetMul(nn.Cell): |
|
|
|
def __init__(self): |
|
|
|
@@ -130,3 +130,46 @@ def test_mul(): |
|
|
|
error4 = np.ones(shape=expect4.shape) * 1.0e-5 |
|
|
|
assert np.all(diff4 < error4) |
|
|
|
assert output4.shape == expect4.shape |
|
|
|
|
|
|
|
class NetMul_dynamic(nn.Cell): |
|
|
|
def __init__(self): |
|
|
|
super(NetMul_dynamic, self).__init__() |
|
|
|
self.mul = P.Mul() |
|
|
|
self.test_dynamic = inner.GpuConvertToDynamicShape() |
|
|
|
|
|
|
|
def construct(self, x, y): |
|
|
|
x = self.test_dynamic(x) |
|
|
|
y = self.test_dynamic(y) |
|
|
|
out = self.mul(x, y) |
|
|
|
return out |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_mul_dynamic(): |
|
|
|
x1_np = np.array([768]).astype(np.float32) |
|
|
|
y1_np = np.array([3072.5]).astype(np.float32) |
|
|
|
x2_np = np.random.uniform(-2, 2, (2, 1, 1, 4)).astype(np.float32) |
|
|
|
y2_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32) |
|
|
|
|
|
|
|
x1 = Tensor(x1_np) |
|
|
|
y1 = Tensor(y1_np) |
|
|
|
x2 = Tensor(x2_np) |
|
|
|
y2 = Tensor(y2_np) |
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
|
|
|
|
mul = NetMul_dynamic() |
|
|
|
|
|
|
|
output1 = mul(x1, y1) |
|
|
|
output2 = mul(x2, y2) |
|
|
|
expect1 = np.multiply(x1_np, y1_np) |
|
|
|
expect2 = np.multiply(x2_np, y2_np) |
|
|
|
diff1 = output1.asnumpy() - expect1 |
|
|
|
diff2 = output2.asnumpy() - expect2 |
|
|
|
error1 = np.ones(shape=expect1.shape) * 1.0e-5 |
|
|
|
assert np.all(diff1 < error1) |
|
|
|
assert output1.shape == expect1.shape |
|
|
|
error2 = np.ones(shape=expect2.shape) * 1.0e-5 |
|
|
|
assert np.all(diff2 < error2) |
|
|
|
assert output2.shape == expect2.shape |