| @@ -20,7 +20,7 @@ import mindspore.context as context | |||||
| import mindspore.nn as nn | import mindspore.nn as nn | ||||
| from mindspore import Tensor | from mindspore import Tensor | ||||
| from mindspore.ops import operations as P | from mindspore.ops import operations as P | ||||
| from mindspore.ops.operations import _inner_ops as inner | |||||
| class NetMul(nn.Cell): | class NetMul(nn.Cell): | ||||
| def __init__(self): | def __init__(self): | ||||
| @@ -130,3 +130,46 @@ def test_mul(): | |||||
| error4 = np.ones(shape=expect4.shape) * 1.0e-5 | error4 = np.ones(shape=expect4.shape) * 1.0e-5 | ||||
| assert np.all(diff4 < error4) | assert np.all(diff4 < error4) | ||||
| assert output4.shape == expect4.shape | assert output4.shape == expect4.shape | ||||
| class NetMul_dynamic(nn.Cell): | |||||
| def __init__(self): | |||||
| super(NetMul_dynamic, self).__init__() | |||||
| self.mul = P.Mul() | |||||
| self.test_dynamic = inner.GpuConvertToDynamicShape() | |||||
| def construct(self, x, y): | |||||
| x = self.test_dynamic(x) | |||||
| y = self.test_dynamic(y) | |||||
| out = self.mul(x, y) | |||||
| return out | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_mul_dynamic(): | |||||
| x1_np = np.array([768]).astype(np.float32) | |||||
| y1_np = np.array([3072.5]).astype(np.float32) | |||||
| x2_np = np.random.uniform(-2, 2, (2, 1, 1, 4)).astype(np.float32) | |||||
| y2_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32) | |||||
| x1 = Tensor(x1_np) | |||||
| y1 = Tensor(y1_np) | |||||
| x2 = Tensor(x2_np) | |||||
| y2 = Tensor(y2_np) | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
| mul = NetMul_dynamic() | |||||
| output1 = mul(x1, y1) | |||||
| output2 = mul(x2, y2) | |||||
| expect1 = np.multiply(x1_np, y1_np) | |||||
| expect2 = np.multiply(x2_np, y2_np) | |||||
| diff1 = output1.asnumpy() - expect1 | |||||
| diff2 = output2.asnumpy() - expect2 | |||||
| error1 = np.ones(shape=expect1.shape) * 1.0e-5 | |||||
| assert np.all(diff1 < error1) | |||||
| assert output1.shape == expect1.shape | |||||
| error2 = np.ones(shape=expect2.shape) * 1.0e-5 | |||||
| assert np.all(diff2 < error2) | |||||
| assert output2.shape == expect2.shape | |||||