From 503c38ca1a70bee23d0dc1c68eaed6afecd443d6 Mon Sep 17 00:00:00 2001 From: TFbunny Date: Mon, 11 Jan 2021 16:19:17 -0500 Subject: [PATCH] add testcase for dynamic shape GPU P.Mul --- tests/st/ops/gpu/test_mul_op.py | 45 ++++++++++++++++++++++++++++++++- 1 file changed, 44 insertions(+), 1 deletion(-) diff --git a/tests/st/ops/gpu/test_mul_op.py b/tests/st/ops/gpu/test_mul_op.py index 6ae038a3fd..884138cc91 100644 --- a/tests/st/ops/gpu/test_mul_op.py +++ b/tests/st/ops/gpu/test_mul_op.py @@ -20,7 +20,7 @@ import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P - +from mindspore.ops.operations import _inner_ops as inner class NetMul(nn.Cell): def __init__(self): @@ -130,3 +130,46 @@ def test_mul(): error4 = np.ones(shape=expect4.shape) * 1.0e-5 assert np.all(diff4 < error4) assert output4.shape == expect4.shape + +class NetMul_dynamic(nn.Cell): + def __init__(self): + super(NetMul_dynamic, self).__init__() + self.mul = P.Mul() + self.test_dynamic = inner.GpuConvertToDynamicShape() + + def construct(self, x, y): + x = self.test_dynamic(x) + y = self.test_dynamic(y) + out = self.mul(x, y) + return out + +@pytest.mark.level0 +@pytest.mark.platform_x86_gpu_training +@pytest.mark.env_onecard +def test_mul_dynamic(): + x1_np = np.array([768]).astype(np.float32) + y1_np = np.array([3072.5]).astype(np.float32) + x2_np = np.random.uniform(-2, 2, (2, 1, 1, 4)).astype(np.float32) + y2_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32) + + x1 = Tensor(x1_np) + y1 = Tensor(y1_np) + x2 = Tensor(x2_np) + y2 = Tensor(y2_np) + + context.set_context(mode=context.GRAPH_MODE, device_target="GPU") + + mul = NetMul_dynamic() + + output1 = mul(x1, y1) + output2 = mul(x2, y2) + expect1 = np.multiply(x1_np, y1_np) + expect2 = np.multiply(x2_np, y2_np) + diff1 = output1.asnumpy() - expect1 + diff2 = output2.asnumpy() - expect2 + error1 = np.ones(shape=expect1.shape) * 1.0e-5 + assert np.all(diff1 < error1) + assert output1.shape == expect1.shape + error2 = np.ones(shape=expect2.shape) * 1.0e-5 + assert np.all(diff2 < error2) + assert output2.shape == expect2.shape