You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

run_ner.py 16 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. '''
  16. Bert finetune and evaluation script.
  17. '''
  18. import os
  19. import argparse
  20. import time
  21. from src.bert_for_finetune import BertFinetuneCell, BertNER
  22. from src.finetune_eval_config import optimizer_cfg, bert_net_cfg
  23. from src.dataset import create_ner_dataset
  24. from src.utils import make_directory, LossCallBack, LoadNewestCkpt, BertLearningRate, convert_labels_to_index
  25. from src.assessment_method import Accuracy, F1, MCC, Spearman_Correlation
  26. import mindspore.common.dtype as mstype
  27. from mindspore import context
  28. from mindspore import log as logger
  29. from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell
  30. from mindspore.nn.optim import AdamWeightDecay, Lamb, Momentum
  31. from mindspore.train.model import Model
  32. from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, TimeMonitor
  33. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  34. _cur_dir = os.getcwd()
  35. def do_train(dataset=None, network=None, load_checkpoint_path="", save_checkpoint_path="", epoch_num=1):
  36. """ do train """
  37. if load_checkpoint_path == "":
  38. raise ValueError("Pretrain model missed, finetune task must load pretrain model!")
  39. steps_per_epoch = dataset.get_dataset_size()
  40. # optimizer
  41. if optimizer_cfg.optimizer == 'AdamWeightDecay':
  42. lr_schedule = BertLearningRate(learning_rate=optimizer_cfg.AdamWeightDecay.learning_rate,
  43. end_learning_rate=optimizer_cfg.AdamWeightDecay.end_learning_rate,
  44. warmup_steps=int(steps_per_epoch * epoch_num * 0.1),
  45. decay_steps=steps_per_epoch * epoch_num,
  46. power=optimizer_cfg.AdamWeightDecay.power)
  47. params = network.trainable_params()
  48. decay_params = list(filter(optimizer_cfg.AdamWeightDecay.decay_filter, params))
  49. other_params = list(filter(lambda x: not optimizer_cfg.AdamWeightDecay.decay_filter(x), params))
  50. group_params = [{'params': decay_params, 'weight_decay': optimizer_cfg.AdamWeightDecay.weight_decay},
  51. {'params': other_params, 'weight_decay': 0.0}]
  52. optimizer = AdamWeightDecay(group_params, lr_schedule, eps=optimizer_cfg.AdamWeightDecay.eps)
  53. elif optimizer_cfg.optimizer == 'Lamb':
  54. lr_schedule = BertLearningRate(learning_rate=optimizer_cfg.Lamb.learning_rate,
  55. end_learning_rate=optimizer_cfg.Lamb.end_learning_rate,
  56. warmup_steps=int(steps_per_epoch * epoch_num * 0.1),
  57. decay_steps=steps_per_epoch * epoch_num,
  58. power=optimizer_cfg.Lamb.power)
  59. optimizer = Lamb(network.trainable_params(), learning_rate=lr_schedule)
  60. elif optimizer_cfg.optimizer == 'Momentum':
  61. optimizer = Momentum(network.trainable_params(), learning_rate=optimizer_cfg.Momentum.learning_rate,
  62. momentum=optimizer_cfg.Momentum.momentum)
  63. else:
  64. raise Exception("Optimizer not supported. support: [AdamWeightDecay, Lamb, Momentum]")
  65. # load checkpoint into network
  66. ckpt_config = CheckpointConfig(save_checkpoint_steps=steps_per_epoch, keep_checkpoint_max=1)
  67. ckpoint_cb = ModelCheckpoint(prefix="ner",
  68. directory=None if save_checkpoint_path == "" else save_checkpoint_path,
  69. config=ckpt_config)
  70. param_dict = load_checkpoint(load_checkpoint_path)
  71. load_param_into_net(network, param_dict)
  72. update_cell = DynamicLossScaleUpdateCell(loss_scale_value=2**32, scale_factor=2, scale_window=1000)
  73. netwithgrads = BertFinetuneCell(network, optimizer=optimizer, scale_update_cell=update_cell)
  74. model = Model(netwithgrads)
  75. callbacks = [TimeMonitor(dataset.get_dataset_size()), LossCallBack(dataset.get_dataset_size()), ckpoint_cb]
  76. train_begin = time.time()
  77. model.train(epoch_num, dataset, callbacks=callbacks)
  78. train_end = time.time()
  79. print("latency: {:.6f} s".format(train_end - train_begin))
  80. def eval_result_print(assessment_method="accuracy", callback=None):
  81. """print eval result"""
  82. if assessment_method == "accuracy":
  83. print("acc_num {} , total_num {}, accuracy {:.6f}".format(callback.acc_num, callback.total_num,
  84. callback.acc_num / callback.total_num))
  85. elif assessment_method == "bf1":
  86. print("Precision {:.6f} ".format(callback.TP / (callback.TP + callback.FP)))
  87. print("Recall {:.6f} ".format(callback.TP / (callback.TP + callback.FN)))
  88. print("F1 {:.6f} ".format(2 * callback.TP / (2 * callback.TP + callback.FP + callback.FN)))
  89. elif assessment_method == "mf1":
  90. print("F1 {:.6f} ".format(callback.eval()[0]))
  91. elif assessment_method == "mcc":
  92. print("MCC {:.6f} ".format(callback.cal()))
  93. elif assessment_method == "spearman_correlation":
  94. print("Spearman Correlation is {:.6f} ".format(callback.cal()[0]))
  95. else:
  96. raise ValueError("Assessment method not supported, support: [accuracy, f1, mcc, spearman_correlation]")
  97. def do_eval(dataset=None, network=None, use_crf="", num_class=41, assessment_method="accuracy", data_file="",
  98. load_checkpoint_path="", vocab_file="", label_file="", tag_to_index=None, batch_size=1):
  99. """ do eval """
  100. if load_checkpoint_path == "":
  101. raise ValueError("Finetune model missed, evaluation task must load finetune model!")
  102. net_for_pretraining = network(bert_net_cfg, batch_size, False, num_class,
  103. use_crf=(use_crf.lower() == "true"), tag_to_index=tag_to_index)
  104. net_for_pretraining.set_train(False)
  105. param_dict = load_checkpoint(load_checkpoint_path)
  106. load_param_into_net(net_for_pretraining, param_dict)
  107. model = Model(net_for_pretraining)
  108. if assessment_method == "clue_benchmark":
  109. from src.cluener_evaluation import submit
  110. submit(model=model, path=data_file, vocab_file=vocab_file, use_crf=use_crf,
  111. label_file=label_file, tag_to_index=tag_to_index)
  112. else:
  113. if assessment_method == "accuracy":
  114. callback = Accuracy()
  115. elif assessment_method == "bf1":
  116. callback = F1((use_crf.lower() == "true"), num_class)
  117. elif assessment_method == "mf1":
  118. callback = F1((use_crf.lower() == "true"), num_labels=num_class, mode="MultiLabel")
  119. elif assessment_method == "mcc":
  120. callback = MCC()
  121. elif assessment_method == "spearman_correlation":
  122. callback = Spearman_Correlation()
  123. else:
  124. raise ValueError("Assessment method not supported, support: [accuracy, f1, mcc, spearman_correlation]")
  125. columns_list = ["input_ids", "input_mask", "segment_ids", "label_ids"]
  126. for data in dataset.create_dict_iterator(num_epochs=1):
  127. input_data = []
  128. for i in columns_list:
  129. input_data.append(data[i])
  130. input_ids, input_mask, token_type_id, label_ids = input_data
  131. logits = model.predict(input_ids, input_mask, token_type_id, label_ids)
  132. callback.update(logits, label_ids)
  133. print("==============================================================")
  134. eval_result_print(assessment_method, callback)
  135. print("==============================================================")
  136. def parse_args():
  137. """set and check parameters."""
  138. parser = argparse.ArgumentParser(description="run ner")
  139. parser.add_argument("--device_target", type=str, default="Ascend", choices=["Ascend", "GPU"],
  140. help="Device type, default is Ascend")
  141. parser.add_argument("--assessment_method", type=str, default="BF1", choices=["BF1", "clue_benchmark", "MF1"],
  142. help="assessment_method include: [BF1, clue_benchmark, MF1], default is BF1")
  143. parser.add_argument("--do_train", type=str, default="false", choices=["true", "false"],
  144. help="Eable train, default is false")
  145. parser.add_argument("--do_eval", type=str, default="false", choices=["true", "false"],
  146. help="Eable eval, default is false")
  147. parser.add_argument("--use_crf", type=str, default="false", choices=["true", "false"],
  148. help="Use crf, default is false")
  149. parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
  150. parser.add_argument("--epoch_num", type=int, default=5, help="Epoch number, default is 5.")
  151. parser.add_argument("--train_data_shuffle", type=str, default="true", choices=["true", "false"],
  152. help="Enable train data shuffle, default is true")
  153. parser.add_argument("--eval_data_shuffle", type=str, default="false", choices=["true", "false"],
  154. help="Enable eval data shuffle, default is false")
  155. parser.add_argument("--train_batch_size", type=int, default=32, help="Train batch size, default is 32")
  156. parser.add_argument("--eval_batch_size", type=int, default=1, help="Eval batch size, default is 1")
  157. parser.add_argument("--vocab_file_path", type=str, default="", help="Vocab file path, used in clue benchmark")
  158. parser.add_argument("--label_file_path", type=str, default="", help="label file path, used in clue benchmark")
  159. parser.add_argument("--save_finetune_checkpoint_path", type=str, default="", help="Save checkpoint path")
  160. parser.add_argument("--load_pretrain_checkpoint_path", type=str, default="", help="Load checkpoint file path")
  161. parser.add_argument("--load_finetune_checkpoint_path", type=str, default="", help="Load checkpoint file path")
  162. parser.add_argument("--train_data_file_path", type=str, default="",
  163. help="Data path, it is better to use absolute path")
  164. parser.add_argument("--eval_data_file_path", type=str, default="",
  165. help="Data path, it is better to use absolute path")
  166. parser.add_argument("--dataset_format", type=str, default="mindrecord", choices=["mindrecord", "tfrecord"],
  167. help="Dataset format, support mindrecord or tfrecord")
  168. parser.add_argument("--schema_file_path", type=str, default="",
  169. help="Schema path, it is better to use absolute path")
  170. args_opt = parser.parse_args()
  171. if args_opt.do_train.lower() == "false" and args_opt.do_eval.lower() == "false":
  172. raise ValueError("At least one of 'do_train' or 'do_eval' must be true")
  173. if args_opt.do_train.lower() == "true" and args_opt.train_data_file_path == "":
  174. raise ValueError("'train_data_file_path' must be set when do finetune task")
  175. if args_opt.do_eval.lower() == "true" and args_opt.eval_data_file_path == "":
  176. raise ValueError("'eval_data_file_path' must be set when do evaluation task")
  177. if args_opt.assessment_method.lower() == "clue_benchmark" and args_opt.vocab_file_path == "":
  178. raise ValueError("'vocab_file_path' must be set to do clue benchmark")
  179. if args_opt.use_crf.lower() == "true" and args_opt.label_file_path == "":
  180. raise ValueError("'label_file_path' must be set to use crf")
  181. if args_opt.assessment_method.lower() == "clue_benchmark" and args_opt.label_file_path == "":
  182. raise ValueError("'label_file_path' must be set to do clue benchmark")
  183. if args_opt.assessment_method.lower() == "clue_benchmark":
  184. args_opt.eval_batch_size = 1
  185. return args_opt
  186. def run_ner():
  187. """run ner task"""
  188. args_opt = parse_args()
  189. epoch_num = args_opt.epoch_num
  190. assessment_method = args_opt.assessment_method.lower()
  191. load_pretrain_checkpoint_path = args_opt.load_pretrain_checkpoint_path
  192. save_finetune_checkpoint_path = args_opt.save_finetune_checkpoint_path
  193. load_finetune_checkpoint_path = args_opt.load_finetune_checkpoint_path
  194. target = args_opt.device_target
  195. if target == "Ascend":
  196. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
  197. elif target == "GPU":
  198. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  199. if bert_net_cfg.compute_type != mstype.float32:
  200. logger.warning('GPU only support fp32 temporarily, run with fp32.')
  201. bert_net_cfg.compute_type = mstype.float32
  202. else:
  203. raise Exception("Target error, GPU or Ascend is supported.")
  204. label_list = []
  205. with open(args_opt.label_file_path) as f:
  206. for label in f:
  207. label_list.append(label.strip())
  208. tag_to_index = convert_labels_to_index(label_list)
  209. if args_opt.use_crf.lower() == "true":
  210. max_val = max(tag_to_index.values())
  211. tag_to_index["<START>"] = max_val + 1
  212. tag_to_index["<STOP>"] = max_val + 2
  213. number_labels = len(tag_to_index)
  214. else:
  215. number_labels = len(tag_to_index)
  216. if args_opt.do_train.lower() == "true":
  217. netwithloss = BertNER(bert_net_cfg, args_opt.train_batch_size, True, num_labels=number_labels,
  218. use_crf=(args_opt.use_crf.lower() == "true"),
  219. tag_to_index=tag_to_index, dropout_prob=0.1)
  220. ds = create_ner_dataset(batch_size=args_opt.train_batch_size, repeat_count=1,
  221. assessment_method=assessment_method, data_file_path=args_opt.train_data_file_path,
  222. schema_file_path=args_opt.schema_file_path, dataset_format=args_opt.dataset_format,
  223. do_shuffle=(args_opt.train_data_shuffle.lower() == "true"))
  224. print("==============================================================")
  225. print("processor_name: {}".format(args_opt.device_target))
  226. print("test_name: BERT Finetune Training")
  227. print("model_name: {}".format("BERT+MLP+CRF" if args_opt.use_crf.lower() == "true" else "BERT + MLP"))
  228. print("batch_size: {}".format(args_opt.train_batch_size))
  229. do_train(ds, netwithloss, load_pretrain_checkpoint_path, save_finetune_checkpoint_path, epoch_num)
  230. if args_opt.do_eval.lower() == "true":
  231. if save_finetune_checkpoint_path == "":
  232. load_finetune_checkpoint_dir = _cur_dir
  233. else:
  234. load_finetune_checkpoint_dir = make_directory(save_finetune_checkpoint_path)
  235. load_finetune_checkpoint_path = LoadNewestCkpt(load_finetune_checkpoint_dir,
  236. ds.get_dataset_size(), epoch_num, "ner")
  237. if args_opt.do_eval.lower() == "true":
  238. ds = create_ner_dataset(batch_size=args_opt.eval_batch_size, repeat_count=1,
  239. assessment_method=assessment_method, data_file_path=args_opt.eval_data_file_path,
  240. schema_file_path=args_opt.schema_file_path, dataset_format=args_opt.dataset_format,
  241. do_shuffle=(args_opt.eval_data_shuffle.lower() == "true"), drop_remainder=False)
  242. do_eval(ds, BertNER, args_opt.use_crf, number_labels, assessment_method,
  243. args_opt.eval_data_file_path, load_finetune_checkpoint_path, args_opt.vocab_file_path,
  244. args_opt.label_file_path, tag_to_index, args_opt.eval_batch_size)
  245. if __name__ == "__main__":
  246. run_ner()