| @@ -312,6 +312,7 @@ Parameters for training and evaluation can be set in file `config.py` and `finet | |||
| ``` | |||
| config for lossscale and etc. | |||
| bert_network version of BERT model: base | nezha, default is base | |||
| batch_size batch size of input dataset: N, default is 16 | |||
| loss_scale_value initial value of loss scale: N, default is 2^32 | |||
| scale_factor factor used to update loss scale: N, default is 2 | |||
| scale_window steps for once updatation of loss scale: N, default is 1000 | |||
| @@ -321,7 +322,6 @@ config for lossscale and etc. | |||
| ### Parameters: | |||
| ``` | |||
| Parameters for dataset and network (Pre-Training/Fine-Tuning/Evaluation): | |||
| batch_size batch size of input dataset: N, default is 16 | |||
| seq_length length of input sequence: N, default is 128 | |||
| vocab_size size of each embedding vector: N, must be consistant with the dataset you use. Default is 21136 | |||
| hidden_size size of bert encoder layers: N, default is 768 | |||
| @@ -335,8 +335,6 @@ Parameters for dataset and network (Pre-Training/Fine-Tuning/Evaluation): | |||
| type_vocab_size size of token type vocab: N, default is 16 | |||
| initializer_range initialization value of TruncatedNormal: Q, default is 0.02 | |||
| use_relative_positions use relative positions or not: True | False, default is False | |||
| input_mask_from_dataset use the input mask loaded form dataset or not: True | False, default is True | |||
| token_type_ids_from_dataset use the token type ids loaded from dataset or not: True | False, default is True | |||
| dtype data type of input: mstype.float16 | mstype.float32, default is mstype.float32 | |||
| compute_type compute type in BertTransformer: mstype.float16 | mstype.float32, default is mstype.float16 | |||
| @@ -19,7 +19,6 @@ from src.bert_model import BertModel | |||
| from src.bert_model import BertConfig | |||
| import mindspore.common.dtype as mstype | |||
| bert_net_cfg_base = BertConfig( | |||
| batch_size=32, | |||
| seq_length=128, | |||
| vocab_size=21128, | |||
| hidden_size=768, | |||
| @@ -33,13 +32,10 @@ bert_net_cfg_base = BertConfig( | |||
| type_vocab_size=2, | |||
| initializer_range=0.02, | |||
| use_relative_positions=False, | |||
| input_mask_from_dataset=True, | |||
| token_type_ids_from_dataset=True, | |||
| dtype=mstype.float32, | |||
| compute_type=mstype.float16 | |||
| ) | |||
| bert_net_cfg_nezha = BertConfig( | |||
| batch_size=32, | |||
| seq_length=128, | |||
| vocab_size=21128, | |||
| hidden_size=1024, | |||
| @@ -53,8 +49,6 @@ bert_net_cfg_nezha = BertConfig( | |||
| type_vocab_size=2, | |||
| initializer_range=0.02, | |||
| use_relative_positions=True, | |||
| input_mask_from_dataset=True, | |||
| token_type_ids_from_dataset=True, | |||
| dtype=mstype.float32, | |||
| compute_type=mstype.float16 | |||
| ) | |||
| @@ -63,15 +57,11 @@ def create_network(name, *args, **kwargs): | |||
| Create bert network for base and nezha. | |||
| ''' | |||
| if name == 'bert_base': | |||
| if "batch_size" in kwargs: | |||
| bert_net_cfg_base.batch_size = kwargs["batch_size"] | |||
| if "seq_length" in kwargs: | |||
| bert_net_cfg_base.seq_length = kwargs["seq_length"] | |||
| is_training = kwargs.get("is_training", default=False) | |||
| return BertModel(bert_net_cfg_base, is_training, *args) | |||
| if name == 'bert_nezha': | |||
| if "batch_size" in kwargs: | |||
| bert_net_cfg_nezha.batch_size = kwargs["batch_size"] | |||
| if "seq_length" in kwargs: | |||
| bert_net_cfg_nezha.seq_length = kwargs["seq_length"] | |||
| is_training = kwargs.get("is_training", default=False) | |||
| @@ -131,7 +131,7 @@ def bert_predict(): | |||
| ''' | |||
| devid = int(os.getenv('DEVICE_ID')) | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=devid) | |||
| dataset = get_enwiki_512_dataset(bert_net_cfg.batch_size, 1) | |||
| dataset = get_enwiki_512_dataset(cfg.batch_size, 1) | |||
| net_for_pretraining = BertPretrainEva(bert_net_cfg) | |||
| net_for_pretraining.set_train(False) | |||
| param_dict = load_checkpoint(cfg.finetune_ckpt) | |||
| @@ -188,7 +188,7 @@ def run_classifier(): | |||
| assessment_method=assessment_method) | |||
| if args_opt.do_train.lower() == "true": | |||
| ds = create_classification_dataset(batch_size=bert_net_cfg.batch_size, repeat_count=1, | |||
| ds = create_classification_dataset(batch_size=optimizer_cfg.batch_size, repeat_count=1, | |||
| assessment_method=assessment_method, | |||
| data_file_path=args_opt.train_data_file_path, | |||
| schema_file_path=args_opt.schema_file_path, | |||
| @@ -204,7 +204,7 @@ def run_classifier(): | |||
| ds.get_dataset_size(), epoch_num, "classifier") | |||
| if args_opt.do_eval.lower() == "true": | |||
| ds = create_classification_dataset(batch_size=bert_net_cfg.batch_size, repeat_count=1, | |||
| ds = create_classification_dataset(batch_size=optimizer_cfg.batch_size, repeat_count=1, | |||
| assessment_method=assessment_method, | |||
| data_file_path=args_opt.eval_data_file_path, | |||
| schema_file_path=args_opt.schema_file_path, | |||
| @@ -104,9 +104,9 @@ def do_eval(dataset=None, network=None, use_crf="", num_class=2, assessment_meth | |||
| if load_checkpoint_path == "": | |||
| raise ValueError("Finetune model missed, evaluation task must load finetune model!") | |||
| if assessment_method == "clue_benchmark": | |||
| bert_net_cfg.batch_size = 1 | |||
| net_for_pretraining = network(bert_net_cfg, False, num_class, use_crf=(use_crf.lower() == "true"), | |||
| tag_to_index=tag_to_index) | |||
| optimizer_cfg.batch_size = 1 | |||
| net_for_pretraining = network(bert_net_cfg, optimizer_cfg.batch_size, False, num_class, | |||
| use_crf=(use_crf.lower() == "true"), tag_to_index=tag_to_index) | |||
| net_for_pretraining.set_train(False) | |||
| param_dict = load_checkpoint(load_checkpoint_path) | |||
| load_param_into_net(net_for_pretraining, param_dict) | |||
| @@ -211,11 +211,11 @@ def run_ner(): | |||
| number_labels = len(tag_to_index) | |||
| else: | |||
| number_labels = args_opt.num_class | |||
| netwithloss = BertNER(bert_net_cfg, True, num_labels=number_labels, | |||
| netwithloss = BertNER(bert_net_cfg, optimizer_cfg.batch_size, True, num_labels=number_labels, | |||
| use_crf=(args_opt.use_crf.lower() == "true"), | |||
| tag_to_index=tag_to_index, dropout_prob=0.1) | |||
| if args_opt.do_train.lower() == "true": | |||
| ds = create_ner_dataset(batch_size=bert_net_cfg.batch_size, repeat_count=1, | |||
| ds = create_ner_dataset(batch_size=optimizer_cfg.batch_size, repeat_count=1, | |||
| assessment_method=assessment_method, data_file_path=args_opt.train_data_file_path, | |||
| schema_file_path=args_opt.schema_file_path, | |||
| do_shuffle=(args_opt.train_data_shuffle.lower() == "true")) | |||
| @@ -107,7 +107,7 @@ def run_pretrain(): | |||
| if args_opt.accumulation_steps > 1: | |||
| logger.info("accumulation steps: {}".format(args_opt.accumulation_steps)) | |||
| logger.info("global batch size: {}".format(bert_net_cfg.batch_size * args_opt.accumulation_steps)) | |||
| logger.info("global batch size: {}".format(cfg.batch_size * args_opt.accumulation_steps)) | |||
| if args_opt.enable_data_sink == "true": | |||
| args_opt.data_sink_steps *= args_opt.accumulation_steps | |||
| logger.info("data sink steps: {}".format(args_opt.data_sink_steps)) | |||
| @@ -123,7 +123,7 @@ def do_eval(dataset=None, vocab_file="", eval_json="", load_checkpoint_path="", | |||
| start = logits[1].asnumpy() | |||
| end = logits[2].asnumpy() | |||
| for i in range(bert_net_cfg.batch_size): | |||
| for i in range(optimizer_cfg.batch_size): | |||
| unique_id = int(ids[i]) | |||
| start_logits = [float(x) for x in start[i].flat] | |||
| end_logits = [float(x) for x in end[i].flat] | |||
| @@ -193,7 +193,7 @@ def run_squad(): | |||
| netwithloss = BertSquad(bert_net_cfg, True, 2, dropout_prob=0.1) | |||
| if args_opt.do_train.lower() == "true": | |||
| ds = create_squad_dataset(batch_size=bert_net_cfg.batch_size, repeat_count=1, | |||
| ds = create_squad_dataset(batch_size=optimizer_cfg.batch_size, repeat_count=1, | |||
| data_file_path=args_opt.train_data_file_path, | |||
| schema_file_path=args_opt.schema_file_path, | |||
| do_shuffle=(args_opt.train_data_shuffle.lower() == "true")) | |||
| @@ -207,7 +207,7 @@ def run_squad(): | |||
| ds.get_dataset_size(), epoch_num, "squad") | |||
| if args_opt.do_eval.lower() == "true": | |||
| ds = create_squad_dataset(batch_size=bert_net_cfg.batch_size, repeat_count=1, | |||
| ds = create_squad_dataset(batch_size=optimizer_cfg.batch_size, repeat_count=1, | |||
| data_file_path=args_opt.eval_data_file_path, | |||
| schema_file_path=args_opt.schema_file_path, is_training=False, | |||
| do_shuffle=(args_opt.eval_data_shuffle.lower() == "true")) | |||
| @@ -274,15 +274,15 @@ class BertNER(nn.Cell): | |||
| """ | |||
| Train interface for sequence labeling finetuning task. | |||
| """ | |||
| def __init__(self, config, is_training, num_labels=11, use_crf=False, tag_to_index=None, dropout_prob=0.0, | |||
| use_one_hot_embeddings=False): | |||
| def __init__(self, config, batch_size, is_training, num_labels=11, use_crf=False, | |||
| tag_to_index=None, dropout_prob=0.0, use_one_hot_embeddings=False): | |||
| super(BertNER, self).__init__() | |||
| self.bert = BertNERModel(config, is_training, num_labels, use_crf, dropout_prob, use_one_hot_embeddings) | |||
| if use_crf: | |||
| if not tag_to_index: | |||
| raise Exception("The dict for tag-index mapping should be provided for CRF.") | |||
| from src.CRF import CRF | |||
| self.loss = CRF(tag_to_index, config.batch_size, config.seq_length, is_training) | |||
| self.loss = CRF(tag_to_index, batch_size, config.seq_length, is_training) | |||
| else: | |||
| self.loss = CrossEntropyCalculation(is_training) | |||
| self.num_labels = num_labels | |||
| @@ -92,9 +92,8 @@ class GetMaskedLMOutput(nn.Cell): | |||
| self.matmul = P.MatMul(transpose_b=True) | |||
| self.log_softmax = nn.LogSoftmax(axis=-1) | |||
| self.shape_flat_offsets = (-1, 1) | |||
| self.rng = Tensor(np.array(range(0, config.batch_size)).astype(np.int32)) | |||
| self.last_idx = (-1,) | |||
| self.shape_flat_sequence_tensor = (config.batch_size * config.seq_length, self.width) | |||
| self.shape_flat_sequence_tensor = (-1, self.width) | |||
| self.seq_length_tensor = Tensor(np.array((config.seq_length,)).astype(np.int32)) | |||
| self.cast = P.Cast() | |||
| self.compute_type = config.compute_type | |||
| @@ -105,8 +104,8 @@ class GetMaskedLMOutput(nn.Cell): | |||
| output_weights, | |||
| positions): | |||
| """Get output log_probs""" | |||
| flat_offsets = self.reshape( | |||
| self.rng * self.seq_length_tensor, self.shape_flat_offsets) | |||
| rng = F.tuple_to_array(F.make_range(P.Shape()(input_tensor)[0])) | |||
| flat_offsets = self.reshape(rng * self.seq_length_tensor, self.shape_flat_offsets) | |||
| flat_position = self.reshape(positions + flat_offsets, self.last_idx) | |||
| flat_sequence_tensor = self.reshape(input_tensor, self.shape_flat_sequence_tensor) | |||
| input_tensor = self.gather(flat_sequence_tensor, flat_position, 0) | |||
| @@ -32,7 +32,6 @@ class BertConfig: | |||
| Configuration for `BertModel`. | |||
| Args: | |||
| batch_size (int): Batch size of input dataset. | |||
| seq_length (int): Length of input sequence. Default: 128. | |||
| vocab_size (int): The shape of each embedding vector. Default: 32000. | |||
| hidden_size (int): Size of the bert encoder layers. Default: 768. | |||
| @@ -52,15 +51,10 @@ class BertConfig: | |||
| type_vocab_size (int): Size of token type vocab. Default: 16. | |||
| initializer_range (float): Initialization value of TruncatedNormal. Default: 0.02. | |||
| use_relative_positions (bool): Specifies whether to use relative positions. Default: False. | |||
| input_mask_from_dataset (bool): Specifies whether to use the input mask that loaded from | |||
| dataset. Default: True. | |||
| token_type_ids_from_dataset (bool): Specifies whether to use the token type ids that loaded | |||
| from dataset. Default: True. | |||
| dtype (:class:`mindspore.dtype`): Data type of the input. Default: mstype.float32. | |||
| compute_type (:class:`mindspore.dtype`): Compute type in BertTransformer. Default: mstype.float32. | |||
| """ | |||
| def __init__(self, | |||
| batch_size, | |||
| seq_length=128, | |||
| vocab_size=32000, | |||
| hidden_size=768, | |||
| @@ -74,11 +68,8 @@ class BertConfig: | |||
| type_vocab_size=16, | |||
| initializer_range=0.02, | |||
| use_relative_positions=False, | |||
| input_mask_from_dataset=True, | |||
| token_type_ids_from_dataset=True, | |||
| dtype=mstype.float32, | |||
| compute_type=mstype.float32): | |||
| self.batch_size = batch_size | |||
| self.seq_length = seq_length | |||
| self.vocab_size = vocab_size | |||
| self.hidden_size = hidden_size | |||
| @@ -91,8 +82,6 @@ class BertConfig: | |||
| self.max_position_embeddings = max_position_embeddings | |||
| self.type_vocab_size = type_vocab_size | |||
| self.initializer_range = initializer_range | |||
| self.input_mask_from_dataset = input_mask_from_dataset | |||
| self.token_type_ids_from_dataset = token_type_ids_from_dataset | |||
| self.use_relative_positions = use_relative_positions | |||
| self.dtype = dtype | |||
| self.compute_type = compute_type | |||
| @@ -385,7 +374,6 @@ class BertAttention(nn.Cell): | |||
| Apply multi-headed attention from "from_tensor" to "to_tensor". | |||
| Args: | |||
| batch_size (int): Batch size of input datasets. | |||
| from_tensor_width (int): Size of last dim of from_tensor. | |||
| to_tensor_width (int): Size of last dim of to_tensor. | |||
| from_seq_length (int): Length of from_tensor sequence. | |||
| @@ -406,7 +394,6 @@ class BertAttention(nn.Cell): | |||
| compute_type (:class:`mindspore.dtype`): Compute type in BertAttention. Default: mstype.float32. | |||
| """ | |||
| def __init__(self, | |||
| batch_size, | |||
| from_tensor_width, | |||
| to_tensor_width, | |||
| from_seq_length, | |||
| @@ -425,7 +412,6 @@ class BertAttention(nn.Cell): | |||
| compute_type=mstype.float32): | |||
| super(BertAttention, self).__init__() | |||
| self.batch_size = batch_size | |||
| self.from_seq_length = from_seq_length | |||
| self.to_seq_length = to_seq_length | |||
| self.num_attention_heads = num_attention_heads | |||
| @@ -452,9 +438,8 @@ class BertAttention(nn.Cell): | |||
| activation=value_act, | |||
| weight_init=weight).to_float(compute_type) | |||
| self.shape_from = (batch_size, from_seq_length, num_attention_heads, size_per_head) | |||
| self.shape_to = ( | |||
| batch_size, to_seq_length, num_attention_heads, size_per_head) | |||
| self.shape_from = (-1, from_seq_length, num_attention_heads, size_per_head) | |||
| self.shape_to = (-1, to_seq_length, num_attention_heads, size_per_head) | |||
| self.matmul_trans_b = P.BatchMatMul(transpose_b=True) | |||
| self.multiply = P.Mul() | |||
| @@ -463,7 +448,6 @@ class BertAttention(nn.Cell): | |||
| self.trans_shape_relative = (2, 0, 1, 3) | |||
| self.trans_shape_position = (1, 2, 0, 3) | |||
| self.multiply_data = -10000.0 | |||
| self.batch_num = batch_size * num_attention_heads | |||
| self.matmul = P.BatchMatMul() | |||
| self.softmax = nn.Softmax() | |||
| @@ -476,9 +460,9 @@ class BertAttention(nn.Cell): | |||
| self.cast = P.Cast() | |||
| self.get_dtype = P.DType() | |||
| if do_return_2d_tensor: | |||
| self.shape_return = (batch_size * from_seq_length, num_attention_heads * size_per_head) | |||
| self.shape_return = (-1, num_attention_heads * size_per_head) | |||
| else: | |||
| self.shape_return = (batch_size, from_seq_length, num_attention_heads * size_per_head) | |||
| self.shape_return = (-1, from_seq_length, num_attention_heads * size_per_head) | |||
| self.cast_compute_type = SaturateCast(dst_type=compute_type) | |||
| if self.use_relative_positions: | |||
| @@ -514,7 +498,7 @@ class BertAttention(nn.Cell): | |||
| # query_layer_r is [F, B * N, H] | |||
| query_layer_r = self.reshape(query_layer_t, | |||
| (self.from_seq_length, | |||
| self.batch_num, | |||
| -1, | |||
| self.size_per_head)) | |||
| # key_position_scores is [F, B * N, F|T] | |||
| key_position_scores = self.matmul_trans_b(query_layer_r, | |||
| @@ -522,7 +506,7 @@ class BertAttention(nn.Cell): | |||
| # key_position_scores_r is [F, B, N, F|T] | |||
| key_position_scores_r = self.reshape(key_position_scores, | |||
| (self.from_seq_length, | |||
| self.batch_size, | |||
| -1, | |||
| self.num_attention_heads, | |||
| self.from_seq_length)) | |||
| # key_position_scores_r_t is [B, N, F, F|T] | |||
| @@ -585,7 +569,6 @@ class BertSelfAttention(nn.Cell): | |||
| Apply self-attention. | |||
| Args: | |||
| batch_size (int): Batch size of input dataset. | |||
| seq_length (int): Length of input sequence. | |||
| hidden_size (int): Size of the bert encoder layers. | |||
| num_attention_heads (int): Number of attention heads. Default: 12. | |||
| @@ -598,7 +581,6 @@ class BertSelfAttention(nn.Cell): | |||
| compute_type (:class:`mindspore.dtype`): Compute type in BertSelfAttention. Default: mstype.float32. | |||
| """ | |||
| def __init__(self, | |||
| batch_size, | |||
| seq_length, | |||
| hidden_size, | |||
| num_attention_heads=12, | |||
| @@ -616,7 +598,6 @@ class BertSelfAttention(nn.Cell): | |||
| self.size_per_head = int(hidden_size / num_attention_heads) | |||
| self.attention = BertAttention( | |||
| batch_size=batch_size, | |||
| from_tensor_width=hidden_size, | |||
| to_tensor_width=hidden_size, | |||
| from_seq_length=seq_length, | |||
| @@ -651,7 +632,6 @@ class BertEncoderCell(nn.Cell): | |||
| Encoder cells used in BertTransformer. | |||
| Args: | |||
| batch_size (int): Batch size of input dataset. | |||
| hidden_size (int): Size of the bert encoder layers. Default: 768. | |||
| seq_length (int): Length of input sequence. Default: 512. | |||
| num_attention_heads (int): Number of attention heads. Default: 12. | |||
| @@ -666,7 +646,6 @@ class BertEncoderCell(nn.Cell): | |||
| compute_type (:class:`mindspore.dtype`): Compute type in attention. Default: mstype.float32. | |||
| """ | |||
| def __init__(self, | |||
| batch_size, | |||
| hidden_size=768, | |||
| seq_length=512, | |||
| num_attention_heads=12, | |||
| @@ -680,7 +659,6 @@ class BertEncoderCell(nn.Cell): | |||
| compute_type=mstype.float32): | |||
| super(BertEncoderCell, self).__init__() | |||
| self.attention = BertSelfAttention( | |||
| batch_size=batch_size, | |||
| hidden_size=hidden_size, | |||
| seq_length=seq_length, | |||
| num_attention_heads=num_attention_heads, | |||
| @@ -715,7 +693,6 @@ class BertTransformer(nn.Cell): | |||
| Multi-layer bert transformer. | |||
| Args: | |||
| batch_size (int): Batch size of input dataset. | |||
| hidden_size (int): Size of the encoder layers. | |||
| seq_length (int): Length of input sequence. | |||
| num_hidden_layers (int): Number of hidden layers in encoder cells. | |||
| @@ -732,7 +709,6 @@ class BertTransformer(nn.Cell): | |||
| return_all_encoders (bool): Specifies whether to return all encoders. Default: False. | |||
| """ | |||
| def __init__(self, | |||
| batch_size, | |||
| hidden_size, | |||
| seq_length, | |||
| num_hidden_layers, | |||
| @@ -751,8 +727,7 @@ class BertTransformer(nn.Cell): | |||
| layers = [] | |||
| for _ in range(num_hidden_layers): | |||
| layer = BertEncoderCell(batch_size=batch_size, | |||
| hidden_size=hidden_size, | |||
| layer = BertEncoderCell(hidden_size=hidden_size, | |||
| seq_length=seq_length, | |||
| num_attention_heads=num_attention_heads, | |||
| intermediate_size=intermediate_size, | |||
| @@ -769,7 +744,7 @@ class BertTransformer(nn.Cell): | |||
| self.reshape = P.Reshape() | |||
| self.shape = (-1, hidden_size) | |||
| self.out_shape = (batch_size, seq_length, hidden_size) | |||
| self.out_shape = (-1, seq_length, hidden_size) | |||
| def construct(self, input_tensor, attention_mask): | |||
| """Multi-layer bert transformer.""" | |||
| @@ -799,24 +774,12 @@ class CreateAttentionMaskFromInputMask(nn.Cell): | |||
| """ | |||
| def __init__(self, config): | |||
| super(CreateAttentionMaskFromInputMask, self).__init__() | |||
| self.input_mask_from_dataset = config.input_mask_from_dataset | |||
| self.input_mask = None | |||
| if not self.input_mask_from_dataset: | |||
| self.input_mask = initializer( | |||
| "ones", [config.batch_size, config.seq_length], mstype.int32).to_tensor() | |||
| self.cast = P.Cast() | |||
| self.reshape = P.Reshape() | |||
| self.shape = (config.batch_size, 1, config.seq_length) | |||
| self.broadcast_ones = initializer( | |||
| "ones", [config.batch_size, config.seq_length, 1], mstype.float32).to_tensor() | |||
| self.batch_matmul = P.BatchMatMul() | |||
| self.shape = (-1, 1, config.seq_length) | |||
| def construct(self, input_mask): | |||
| if not self.input_mask_from_dataset: | |||
| input_mask = self.input_mask | |||
| attention_mask = self.cast(self.reshape(input_mask, self.shape), mstype.float32) | |||
| return attention_mask | |||
| @@ -840,9 +803,6 @@ class BertModel(nn.Cell): | |||
| config.hidden_dropout_prob = 0.0 | |||
| config.attention_probs_dropout_prob = 0.0 | |||
| self.input_mask_from_dataset = config.input_mask_from_dataset | |||
| self.token_type_ids_from_dataset = config.token_type_ids_from_dataset | |||
| self.batch_size = config.batch_size | |||
| self.seq_length = config.seq_length | |||
| self.hidden_size = config.hidden_size | |||
| self.num_hidden_layers = config.num_hidden_layers | |||
| @@ -850,12 +810,7 @@ class BertModel(nn.Cell): | |||
| self.token_type_ids = None | |||
| self.last_idx = self.num_hidden_layers - 1 | |||
| output_embedding_shape = [self.batch_size, self.seq_length, | |||
| self.embedding_size] | |||
| if not self.token_type_ids_from_dataset: | |||
| self.token_type_ids = initializer( | |||
| "zeros", [self.batch_size, self.seq_length], mstype.int32).to_tensor() | |||
| output_embedding_shape = [-1, self.seq_length, self.embedding_size] | |||
| self.bert_embedding_lookup = EmbeddingLookup( | |||
| vocab_size=config.vocab_size, | |||
| @@ -876,7 +831,6 @@ class BertModel(nn.Cell): | |||
| dropout_prob=config.hidden_dropout_prob) | |||
| self.bert_encoder = BertTransformer( | |||
| batch_size=self.batch_size, | |||
| hidden_size=self.hidden_size, | |||
| seq_length=self.seq_length, | |||
| num_attention_heads=config.num_attention_heads, | |||
| @@ -905,8 +859,6 @@ class BertModel(nn.Cell): | |||
| def construct(self, input_ids, token_type_ids, input_mask): | |||
| """Bidirectional Encoder Representations from Transformers.""" | |||
| # embedding | |||
| if not self.token_type_ids_from_dataset: | |||
| token_type_ids = self.token_type_ids | |||
| word_embeddings, embedding_tables = self.bert_embedding_lookup(input_ids) | |||
| embedding_output = self.bert_embedding_postprocessor(token_type_ids, | |||
| word_embeddings) | |||
| @@ -921,9 +873,10 @@ class BertModel(nn.Cell): | |||
| sequence_output = self.cast(encoder_output[self.last_idx], self.dtype) | |||
| # pooler | |||
| batch_size = P.Shape()(input_ids)[0] | |||
| sequence_slice = self.slice(sequence_output, | |||
| (0, 0, 0), | |||
| (self.batch_size, 1, self.hidden_size), | |||
| (batch_size, 1, self.hidden_size), | |||
| (1, 1, 1)) | |||
| first_token = self.squeeze_1(sequence_slice) | |||
| pooled_output = self.dense(first_token) | |||
| @@ -19,6 +19,7 @@ from easydict import EasyDict as edict | |||
| import mindspore.common.dtype as mstype | |||
| from .bert_model import BertConfig | |||
| cfg = edict({ | |||
| 'batch_size': 32, | |||
| 'bert_network': 'base', | |||
| 'loss_scale_value': 65536, | |||
| 'scale_factor': 2, | |||
| @@ -57,7 +58,6 @@ large: BERT-NEZHA(a Chinese pretrained language model developed by Huawei, which | |||
| ''' | |||
| if cfg.bert_network == 'base': | |||
| bert_net_cfg = BertConfig( | |||
| batch_size=64, | |||
| seq_length=128, | |||
| vocab_size=21128, | |||
| hidden_size=768, | |||
| @@ -71,14 +71,11 @@ if cfg.bert_network == 'base': | |||
| type_vocab_size=2, | |||
| initializer_range=0.02, | |||
| use_relative_positions=False, | |||
| input_mask_from_dataset=True, | |||
| token_type_ids_from_dataset=True, | |||
| dtype=mstype.float32, | |||
| compute_type=mstype.float16 | |||
| ) | |||
| if cfg.bert_network == 'nezha': | |||
| bert_net_cfg = BertConfig( | |||
| batch_size=96, | |||
| seq_length=128, | |||
| vocab_size=21128, | |||
| hidden_size=1024, | |||
| @@ -92,14 +89,11 @@ if cfg.bert_network == 'nezha': | |||
| type_vocab_size=2, | |||
| initializer_range=0.02, | |||
| use_relative_positions=True, | |||
| input_mask_from_dataset=True, | |||
| token_type_ids_from_dataset=True, | |||
| dtype=mstype.float32, | |||
| compute_type=mstype.float16 | |||
| ) | |||
| if cfg.bert_network == 'large': | |||
| bert_net_cfg = BertConfig( | |||
| batch_size=24, | |||
| seq_length=512, | |||
| vocab_size=30522, | |||
| hidden_size=1024, | |||
| @@ -113,8 +107,6 @@ if cfg.bert_network == 'large': | |||
| type_vocab_size=2, | |||
| initializer_range=0.02, | |||
| use_relative_positions=False, | |||
| input_mask_from_dataset=True, | |||
| token_type_ids_from_dataset=True, | |||
| dtype=mstype.float32, | |||
| compute_type=mstype.float16 | |||
| ) | |||
| @@ -20,7 +20,7 @@ import mindspore.common.dtype as mstype | |||
| import mindspore.dataset.engine.datasets as de | |||
| import mindspore.dataset.transforms.c_transforms as C | |||
| from mindspore import log as logger | |||
| from .config import bert_net_cfg | |||
| from .config import cfg | |||
| def create_bert_dataset(device_num=1, rank=0, do_shuffle="true", data_dir=None, schema_dir=None): | |||
| @@ -46,7 +46,7 @@ def create_bert_dataset(device_num=1, rank=0, do_shuffle="true", data_dir=None, | |||
| ds = ds.map(operations=type_cast_op, input_columns="input_mask") | |||
| ds = ds.map(operations=type_cast_op, input_columns="input_ids") | |||
| # apply batch operations | |||
| ds = ds.batch(bert_net_cfg.batch_size, drop_remainder=True) | |||
| ds = ds.batch(cfg.batch_size, drop_remainder=True) | |||
| logger.info("data size: {}".format(ds.get_dataset_size())) | |||
| logger.info("repeat count: {}".format(ds.get_repeat_count())) | |||
| return ds | |||
| @@ -22,6 +22,7 @@ import mindspore.common.dtype as mstype | |||
| from .bert_model import BertConfig | |||
| optimizer_cfg = edict({ | |||
| 'batch_size': 16, | |||
| 'optimizer': 'Lamb', | |||
| 'AdamWeightDecay': edict({ | |||
| 'learning_rate': 2e-5, | |||
| @@ -45,7 +46,6 @@ optimizer_cfg = edict({ | |||
| }) | |||
| bert_net_cfg = BertConfig( | |||
| batch_size=16, | |||
| seq_length=128, | |||
| vocab_size=21128, | |||
| hidden_size=768, | |||
| @@ -59,8 +59,6 @@ bert_net_cfg = BertConfig( | |||
| type_vocab_size=2, | |||
| initializer_range=0.02, | |||
| use_relative_positions=False, | |||
| input_mask_from_dataset=True, | |||
| token_type_ids_from_dataset=True, | |||
| dtype=mstype.float32, | |||
| compute_type=mstype.float16, | |||
| ) | |||
| @@ -107,7 +107,7 @@ class BertNERModel(nn.Cell): | |||
| self.reshape = P.Reshape() | |||
| self.shape = (-1, config.hidden_size) | |||
| self.use_crf = use_crf | |||
| self.origin_shape = (config.batch_size, config.seq_length, self.num_labels) | |||
| self.origin_shape = (-1, config.seq_length, self.num_labels) | |||
| def construct(self, input_ids, input_mask, token_type_id): | |||
| """Return the final logits as the results of log_softmax.""" | |||
| @@ -41,11 +41,10 @@ DATA_DIR = ["/home/workspace/mindspore_dataset/bert/example/examples.tfrecord"] | |||
| SCHEMA_DIR = "/home/workspace/mindspore_dataset/bert/example/datasetSchema.json" | |||
| def get_config(version='base', batch_size=1): | |||
| def get_config(version='base'): | |||
| """get config""" | |||
| if version == 'base': | |||
| bert_config = BertConfig( | |||
| batch_size=batch_size, | |||
| seq_length=128, | |||
| vocab_size=21136, | |||
| hidden_size=768, | |||
| @@ -59,13 +58,10 @@ def get_config(version='base', batch_size=1): | |||
| type_vocab_size=2, | |||
| initializer_range=0.02, | |||
| use_relative_positions=True, | |||
| input_mask_from_dataset=True, | |||
| token_type_ids_from_dataset=True, | |||
| dtype=mstype.float32, | |||
| compute_type=mstype.float32) | |||
| elif version == 'large': | |||
| bert_config = BertConfig( | |||
| batch_size=batch_size, | |||
| seq_length=128, | |||
| vocab_size=21136, | |||
| hidden_size=1024, | |||
| @@ -79,12 +75,10 @@ def get_config(version='base', batch_size=1): | |||
| type_vocab_size=2, | |||
| initializer_range=0.02, | |||
| use_relative_positions=False, | |||
| input_mask_from_dataset=True, | |||
| token_type_ids_from_dataset=True, | |||
| dtype=mstype.float32, | |||
| compute_type=mstype.float16) | |||
| else: | |||
| bert_config = BertConfig(batch_size=batch_size) | |||
| bert_config = BertConfig() | |||
| return bert_config | |||
| @@ -186,8 +180,7 @@ def test_bert_performance(): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False) | |||
| ds, new_repeat_count, sink_size = me_de_train_dataset(sink_mode=True) | |||
| version = os.getenv('VERSION', 'large') | |||
| batch_size = 16 | |||
| config = get_config(version=version, batch_size=batch_size) | |||
| config = get_config(version=version) | |||
| netwithloss = BertNetworkWithLoss(config, True) | |||
| lr = BertLearningRate(decay_steps=sink_size * new_repeat_count, | |||
| @@ -41,11 +41,10 @@ DATA_DIR = ["/home/workspace/mindspore_dataset/bert/example/examples.tfrecord"] | |||
| SCHEMA_DIR = "/home/workspace/mindspore_dataset/bert/example/datasetSchema.json" | |||
| def get_config(version='base', batch_size=1): | |||
| def get_config(version='base'): | |||
| """get config""" | |||
| if version == 'base': | |||
| bert_config = BertConfig( | |||
| batch_size=batch_size, | |||
| seq_length=128, | |||
| vocab_size=21136, | |||
| hidden_size=768, | |||
| @@ -59,13 +58,10 @@ def get_config(version='base', batch_size=1): | |||
| type_vocab_size=2, | |||
| initializer_range=0.02, | |||
| use_relative_positions=True, | |||
| input_mask_from_dataset=True, | |||
| token_type_ids_from_dataset=True, | |||
| dtype=mstype.float32, | |||
| compute_type=mstype.float32) | |||
| elif version == 'large': | |||
| bert_config = BertConfig( | |||
| batch_size=batch_size, | |||
| seq_length=128, | |||
| vocab_size=21136, | |||
| hidden_size=1024, | |||
| @@ -79,12 +75,10 @@ def get_config(version='base', batch_size=1): | |||
| type_vocab_size=2, | |||
| initializer_range=0.02, | |||
| use_relative_positions=False, | |||
| input_mask_from_dataset=True, | |||
| token_type_ids_from_dataset=True, | |||
| dtype=mstype.float32, | |||
| compute_type=mstype.float16) | |||
| else: | |||
| bert_config = BertConfig(batch_size=batch_size) | |||
| bert_config = BertConfig() | |||
| return bert_config | |||
| @@ -185,8 +179,7 @@ def test_bert_percision(): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False) | |||
| ds, new_repeat_count, _ = me_de_train_dataset() | |||
| version = os.getenv('VERSION', 'large') | |||
| batch_size = 16 | |||
| config = get_config(version=version, batch_size=batch_size) | |||
| config = get_config(version=version) | |||
| netwithloss = BertNetworkWithLoss(config, True) | |||
| lr = BertLearningRate(decay_steps=ds.get_dataset_size()*new_repeat_count, | |||
| learning_rate=5e-5, end_learning_rate=1e-9, | |||