| @@ -144,12 +144,14 @@ def run_classifier(): | |||
| parser.add_argument("--do_eval", type=str, default="false", choices=["true", "false"], | |||
| help="Enable eval, default is false") | |||
| parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.") | |||
| parser.add_argument("--epoch_num", type=int, default="1", help="Epoch number, default is 1.") | |||
| parser.add_argument("--num_class", type=int, default="2", help="The number of class, default is 2.") | |||
| parser.add_argument("--epoch_num", type=int, default=3, help="Epoch number, default is 3.") | |||
| parser.add_argument("--num_class", type=int, default=2, help="The number of class, default is 2.") | |||
| parser.add_argument("--train_data_shuffle", type=str, default="true", choices=["true", "false"], | |||
| help="Enable train data shuffle, default is true") | |||
| parser.add_argument("--eval_data_shuffle", type=str, default="false", choices=["true", "false"], | |||
| help="Enable eval data shuffle, default is false") | |||
| parser.add_argument("--train_batch_size", type=int, default=32, help="Train batch size, default is 32") | |||
| parser.add_argument("--eval_batch_size", type=int, default=1, help="Eval batch size, default is 1") | |||
| parser.add_argument("--save_finetune_checkpoint_path", type=str, default="", help="Save checkpoint path") | |||
| parser.add_argument("--load_pretrain_checkpoint_path", type=str, default="", help="Load checkpoint file path") | |||
| parser.add_argument("--load_finetune_checkpoint_path", type=str, default="", help="Load checkpoint file path") | |||
| @@ -188,7 +190,7 @@ def run_classifier(): | |||
| assessment_method=assessment_method) | |||
| if args_opt.do_train.lower() == "true": | |||
| ds = create_classification_dataset(batch_size=optimizer_cfg.batch_size, repeat_count=1, | |||
| ds = create_classification_dataset(batch_size=args_opt.train_batch_size, repeat_count=1, | |||
| assessment_method=assessment_method, | |||
| data_file_path=args_opt.train_data_file_path, | |||
| schema_file_path=args_opt.schema_file_path, | |||
| @@ -204,7 +206,7 @@ def run_classifier(): | |||
| ds.get_dataset_size(), epoch_num, "classifier") | |||
| if args_opt.do_eval.lower() == "true": | |||
| ds = create_classification_dataset(batch_size=optimizer_cfg.batch_size, repeat_count=1, | |||
| ds = create_classification_dataset(batch_size=args_opt.eval_batch_size, repeat_count=1, | |||
| assessment_method=assessment_method, | |||
| data_file_path=args_opt.eval_data_file_path, | |||
| schema_file_path=args_opt.schema_file_path, | |||
| @@ -97,14 +97,12 @@ def eval_result_print(assessment_method="accuracy", callback=None): | |||
| else: | |||
| raise ValueError("Assessment method not supported, support: [accuracy, f1, mcc, spearman_correlation]") | |||
| def do_eval(dataset=None, network=None, use_crf="", num_class=2, assessment_method="accuracy", data_file="", | |||
| load_checkpoint_path="", vocab_file="", label_file="", tag_to_index=None): | |||
| def do_eval(dataset=None, network=None, use_crf="", num_class=41, assessment_method="accuracy", data_file="", | |||
| load_checkpoint_path="", vocab_file="", label_file="", tag_to_index=None, batch_size=1): | |||
| """ do eval """ | |||
| if load_checkpoint_path == "": | |||
| raise ValueError("Finetune model missed, evaluation task must load finetune model!") | |||
| if assessment_method == "clue_benchmark": | |||
| optimizer_cfg.batch_size = 1 | |||
| net_for_pretraining = network(bert_net_cfg, optimizer_cfg.batch_size, False, num_class, | |||
| net_for_pretraining = network(bert_net_cfg, batch_size, False, num_class, | |||
| use_crf=(use_crf.lower() == "true"), tag_to_index=tag_to_index) | |||
| net_for_pretraining.set_train(False) | |||
| param_dict = load_checkpoint(load_checkpoint_path) | |||
| @@ -142,7 +140,7 @@ def do_eval(dataset=None, network=None, use_crf="", num_class=2, assessment_meth | |||
| def parse_args(): | |||
| """set and check parameters.""" | |||
| parser = argparse.ArgumentParser(description="run classifier") | |||
| parser = argparse.ArgumentParser(description="run ner") | |||
| parser.add_argument("--device_target", type=str, default="Ascend", choices=["Ascend", "GPU"], | |||
| help="Device type, default is Ascend") | |||
| parser.add_argument("--assessment_method", type=str, default="F1", choices=["F1", "clue_benchmark"], | |||
| @@ -154,12 +152,14 @@ def parse_args(): | |||
| parser.add_argument("--use_crf", type=str, default="false", choices=["true", "false"], | |||
| help="Use crf, default is false") | |||
| parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.") | |||
| parser.add_argument("--epoch_num", type=int, default="1", help="Epoch number, default is 1.") | |||
| parser.add_argument("--num_class", type=int, default="41", help="The number of class, default is 41.") | |||
| parser.add_argument("--epoch_num", type=int, default=5, help="Epoch number, default is 5.") | |||
| parser.add_argument("--num_class", type=int, default=41, help="The number of class, default is 41.") | |||
| parser.add_argument("--train_data_shuffle", type=str, default="true", choices=["true", "false"], | |||
| help="Enable train data shuffle, default is true") | |||
| parser.add_argument("--eval_data_shuffle", type=str, default="false", choices=["true", "false"], | |||
| help="Enable eval data shuffle, default is false") | |||
| parser.add_argument("--train_batch_size", type=int, default=32, help="Train batch size, default is 32") | |||
| parser.add_argument("--eval_batch_size", type=int, default=1, help="Eval batch size, default is 1") | |||
| parser.add_argument("--vocab_file_path", type=str, default="", help="Vocab file path, used in clue benchmark") | |||
| parser.add_argument("--label_file_path", type=str, default="", help="label file path, used in clue benchmark") | |||
| parser.add_argument("--save_finetune_checkpoint_path", type=str, default="", help="Save checkpoint path") | |||
| @@ -184,6 +184,8 @@ def parse_args(): | |||
| raise ValueError("'label_file_path' must be set to use crf") | |||
| if args_opt.assessment_method.lower() == "clue_benchmark" and args_opt.label_file_path == "": | |||
| raise ValueError("'label_file_path' must be set to do clue benchmark") | |||
| if args_opt.assessment_method.lower() == "clue_benchmark": | |||
| args_opt.eval_batch_size = 1 | |||
| return args_opt | |||
| @@ -217,11 +219,11 @@ def run_ner(): | |||
| number_labels = len(tag_to_index) | |||
| else: | |||
| number_labels = args_opt.num_class | |||
| netwithloss = BertNER(bert_net_cfg, optimizer_cfg.batch_size, True, num_labels=number_labels, | |||
| use_crf=(args_opt.use_crf.lower() == "true"), | |||
| tag_to_index=tag_to_index, dropout_prob=0.1) | |||
| if args_opt.do_train.lower() == "true": | |||
| ds = create_ner_dataset(batch_size=optimizer_cfg.batch_size, repeat_count=1, | |||
| netwithloss = BertNER(bert_net_cfg, args_opt.train_batch_size, True, num_labels=number_labels, | |||
| use_crf=(args_opt.use_crf.lower() == "true"), | |||
| tag_to_index=tag_to_index, dropout_prob=0.1) | |||
| ds = create_ner_dataset(batch_size=args_opt.train_batch_size, repeat_count=1, | |||
| assessment_method=assessment_method, data_file_path=args_opt.train_data_file_path, | |||
| schema_file_path=args_opt.schema_file_path, | |||
| do_shuffle=(args_opt.train_data_shuffle.lower() == "true")) | |||
| @@ -236,12 +238,13 @@ def run_ner(): | |||
| ds.get_dataset_size(), epoch_num, "ner") | |||
| if args_opt.do_eval.lower() == "true": | |||
| ds = create_ner_dataset(batch_size=optimizer_cfg.batch_size, repeat_count=1, | |||
| ds = create_ner_dataset(batch_size=args_opt.eval_batch_size, repeat_count=1, | |||
| assessment_method=assessment_method, data_file_path=args_opt.eval_data_file_path, | |||
| schema_file_path=args_opt.schema_file_path, | |||
| do_shuffle=(args_opt.eval_data_shuffle.lower() == "true")) | |||
| do_eval(ds, BertNER, args_opt.use_crf, number_labels, assessment_method, args_opt.eval_data_file_path, | |||
| load_finetune_checkpoint_path, args_opt.vocab_file_path, args_opt.label_file_path, tag_to_index) | |||
| do_eval(ds, BertNER, args_opt.use_crf, number_labels, assessment_method, | |||
| args_opt.eval_data_file_path, load_finetune_checkpoint_path, args_opt.vocab_file_path, | |||
| args_opt.label_file_path, tag_to_index, args_opt.eval_batch_size) | |||
| if __name__ == "__main__": | |||
| run_ner() | |||
| @@ -22,9 +22,6 @@ import collections | |||
| from src.bert_for_finetune import BertSquadCell, BertSquad | |||
| from src.finetune_eval_config import optimizer_cfg, bert_net_cfg | |||
| from src.dataset import create_squad_dataset | |||
| from src import tokenization | |||
| from src.create_squad_data import read_squad_examples, convert_examples_to_features | |||
| from src.run_squad import write_predictions | |||
| from src.utils import make_directory, LossCallBack, LoadNewestCkpt, BertLearningRate | |||
| import mindspore.common.dtype as mstype | |||
| from mindspore import context | |||
| @@ -85,22 +82,10 @@ def do_train(dataset=None, network=None, load_checkpoint_path="", save_checkpoin | |||
| model.train(epoch_num, dataset, callbacks=callbacks) | |||
| def do_eval(dataset=None, vocab_file="", eval_json="", load_checkpoint_path="", seq_length=384): | |||
| def do_eval(dataset=None, load_checkpoint_path="", eval_batch_size=1): | |||
| """ do eval """ | |||
| if load_checkpoint_path == "": | |||
| raise ValueError("Finetune model missed, evaluation task must load finetune model!") | |||
| tokenizer = tokenization.FullTokenizer(vocab_file=vocab_file, do_lower_case=True) | |||
| eval_examples = read_squad_examples(eval_json, False) | |||
| eval_features = convert_examples_to_features( | |||
| examples=eval_examples, | |||
| tokenizer=tokenizer, | |||
| max_seq_length=seq_length, | |||
| doc_stride=128, | |||
| max_query_length=64, | |||
| is_training=False, | |||
| output_fn=None, | |||
| verbose_logging=False) | |||
| net = BertSquad(bert_net_cfg, False, 2) | |||
| net.set_train(False) | |||
| param_dict = load_checkpoint(load_checkpoint_path) | |||
| @@ -123,7 +108,7 @@ def do_eval(dataset=None, vocab_file="", eval_json="", load_checkpoint_path="", | |||
| start = logits[1].asnumpy() | |||
| end = logits[2].asnumpy() | |||
| for i in range(optimizer_cfg.batch_size): | |||
| for i in range(eval_batch_size): | |||
| unique_id = int(ids[i]) | |||
| start_logits = [float(x) for x in start[i].flat] | |||
| end_logits = [float(x) for x in end[i].flat] | |||
| @@ -131,11 +116,11 @@ def do_eval(dataset=None, vocab_file="", eval_json="", load_checkpoint_path="", | |||
| unique_id=unique_id, | |||
| start_logits=start_logits, | |||
| end_logits=end_logits)) | |||
| write_predictions(eval_examples, eval_features, output, 20, 30, True, "./predictions.json", None, None) | |||
| return output | |||
| def run_squad(): | |||
| """run squad task""" | |||
| parser = argparse.ArgumentParser(description="run classifier") | |||
| parser = argparse.ArgumentParser(description="run squad") | |||
| parser.add_argument("--device_target", type=str, default="Ascend", choices=["Ascend", "GPU"], | |||
| help="Device type, default is Ascend") | |||
| parser.add_argument("--do_train", type=str, default="false", choices=["true", "false"], | |||
| @@ -143,12 +128,14 @@ def run_squad(): | |||
| parser.add_argument("--do_eval", type=str, default="false", choices=["true", "false"], | |||
| help="Eable eval, default is false") | |||
| parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.") | |||
| parser.add_argument("--epoch_num", type=int, default="1", help="Epoch number, default is 1.") | |||
| parser.add_argument("--num_class", type=int, default="2", help="The number of class, default is 2.") | |||
| parser.add_argument("--epoch_num", type=int, default=3, help="Epoch number, default is 1.") | |||
| parser.add_argument("--num_class", type=int, default=2, help="The number of class, default is 2.") | |||
| parser.add_argument("--train_data_shuffle", type=str, default="true", choices=["true", "false"], | |||
| help="Enable train data shuffle, default is true") | |||
| parser.add_argument("--eval_data_shuffle", type=str, default="false", choices=["true", "false"], | |||
| help="Enable eval data shuffle, default is false") | |||
| parser.add_argument("--train_batch_size", type=int, default=32, help="Train batch size, default is 32") | |||
| parser.add_argument("--eval_batch_size", type=int, default=1, help="Eval batch size, default is 1") | |||
| parser.add_argument("--vocab_file_path", type=str, default="", help="Vocab file path") | |||
| parser.add_argument("--eval_json_path", type=str, default="", help="Evaluation json file path, can be eval.json") | |||
| parser.add_argument("--save_finetune_checkpoint_path", type=str, default="", help="Save checkpoint path") | |||
| @@ -156,8 +143,6 @@ def run_squad(): | |||
| parser.add_argument("--load_finetune_checkpoint_path", type=str, default="", help="Load checkpoint file path") | |||
| parser.add_argument("--train_data_file_path", type=str, default="", | |||
| help="Data path, it is better to use absolute path") | |||
| parser.add_argument("--eval_data_file_path", type=str, default="", | |||
| help="Data path, it is better to use absolute path") | |||
| parser.add_argument("--schema_file_path", type=str, default="", | |||
| help="Schema path, it is better to use absolute path") | |||
| args_opt = parser.parse_args() | |||
| @@ -171,8 +156,6 @@ def run_squad(): | |||
| if args_opt.do_train.lower() == "true" and args_opt.train_data_file_path == "": | |||
| raise ValueError("'train_data_file_path' must be set when do finetune task") | |||
| if args_opt.do_eval.lower() == "true": | |||
| if args_opt.eval_data_file_path == "": | |||
| raise ValueError("'eval_data_file_path' must be set when do evaluation task") | |||
| if args_opt.vocab_file_path == "": | |||
| raise ValueError("'vocab_file_path' must be set when do evaluation task") | |||
| if args_opt.eval_json_path == "": | |||
| @@ -193,7 +176,7 @@ def run_squad(): | |||
| netwithloss = BertSquad(bert_net_cfg, True, 2, dropout_prob=0.1) | |||
| if args_opt.do_train.lower() == "true": | |||
| ds = create_squad_dataset(batch_size=optimizer_cfg.batch_size, repeat_count=1, | |||
| ds = create_squad_dataset(batch_size=args_opt.train_batch_size, repeat_count=1, | |||
| data_file_path=args_opt.train_data_file_path, | |||
| schema_file_path=args_opt.schema_file_path, | |||
| do_shuffle=(args_opt.train_data_shuffle.lower() == "true")) | |||
| @@ -207,12 +190,29 @@ def run_squad(): | |||
| ds.get_dataset_size(), epoch_num, "squad") | |||
| if args_opt.do_eval.lower() == "true": | |||
| ds = create_squad_dataset(batch_size=optimizer_cfg.batch_size, repeat_count=1, | |||
| data_file_path=args_opt.eval_data_file_path, | |||
| from src import tokenization | |||
| from src.create_squad_data import read_squad_examples, convert_examples_to_features | |||
| from src.squad_get_predictions import write_predictions | |||
| from src.squad_postprocess import SQuad_postprocess | |||
| tokenizer = tokenization.FullTokenizer(vocab_file=args_opt.vocab_file_path, do_lower_case=True) | |||
| eval_examples = read_squad_examples(args_opt.eval_json_path, False) | |||
| eval_features = convert_examples_to_features( | |||
| examples=eval_examples, | |||
| tokenizer=tokenizer, | |||
| max_seq_length=bert_net_cfg.seq_length, | |||
| doc_stride=128, | |||
| max_query_length=64, | |||
| is_training=False, | |||
| output_fn=None, | |||
| vocab_file=args_opt.vocab_file_path) | |||
| ds = create_squad_dataset(batch_size=args_opt.eval_batch_size, repeat_count=1, | |||
| data_file_path=eval_features, | |||
| schema_file_path=args_opt.schema_file_path, is_training=False, | |||
| do_shuffle=(args_opt.eval_data_shuffle.lower() == "true")) | |||
| do_eval(ds, args_opt.vocab_file_path, args_opt.eval_json_path, | |||
| load_finetune_checkpoint_path, bert_net_cfg.seq_length) | |||
| outputs = do_eval(ds, load_finetune_checkpoint_path, args_opt.eval_batch_size) | |||
| all_predictions = write_predictions(eval_examples, eval_features, outputs, 20, 30, True) | |||
| SQuad_postprocess(args_opt.eval_json_path, all_predictions, output_metrics="output.json") | |||
| if __name__ == "__main__": | |||
| run_squad() | |||
| @@ -32,13 +32,15 @@ python ${PROJECT_DIR}/../run_classifier.py \ | |||
| --do_eval="false" \ | |||
| --assessment_method="Accuracy" \ | |||
| --device_id=0 \ | |||
| --epoch_num=1 \ | |||
| --epoch_num=3 \ | |||
| --num_class=2 \ | |||
| --train_data_shuffle="true" \ | |||
| --eval_data_shuffle="false" \ | |||
| --train_batch_size=32 \ | |||
| --eval_batch_size=1 \ | |||
| --save_finetune_checkpoint_path="" \ | |||
| --load_pretrain_checkpoint_path="" \ | |||
| --load_finetune_checkpoint_path="" \ | |||
| --train_data_file_path="" \ | |||
| --eval_data_file_path="" \ | |||
| --schema_file_path="" > classfifier_log.txt 2>&1 & | |||
| --schema_file_path="" > classifier_log.txt 2>&1 & | |||
| @@ -33,10 +33,12 @@ python ${PROJECT_DIR}/../run_ner.py \ | |||
| --assessment_method="F1" \ | |||
| --use_crf="false" \ | |||
| --device_id=0 \ | |||
| --epoch_num=1 \ | |||
| --num_class=2 \ | |||
| --epoch_num=5 \ | |||
| --num_class=41 \ | |||
| --train_data_shuffle="true" \ | |||
| --eval_data_shuffle="false" \ | |||
| --train_batch_size=32 \ | |||
| --eval_batch_size=1 \ | |||
| --vocab_file_path="" \ | |||
| --label_file_path="" \ | |||
| --save_finetune_checkpoint_path="" \ | |||
| @@ -31,15 +31,16 @@ python ${PROJECT_DIR}/../run_squad.py \ | |||
| --do_train="true" \ | |||
| --do_eval="false" \ | |||
| --device_id=0 \ | |||
| --epoch_num=1 \ | |||
| --epoch_num=3 \ | |||
| --num_class=2 \ | |||
| --train_data_shuffle="true" \ | |||
| --eval_data_shuffle="false" \ | |||
| --train_batch_size=32 \ | |||
| --eval_batch_size=1 \ | |||
| --vocab_file_path="" \ | |||
| --eval_json_path="" \ | |||
| --save_finetune_checkpoint_path="" \ | |||
| --load_pretrain_checkpoint_path="" \ | |||
| --load_finetune_checkpoint_path="" \ | |||
| --train_data_file_path="" \ | |||
| --eval_data_file_path="" \ | |||
| --eval_json_path="" \ | |||
| --schema_file_path="" > squad_log.txt 2>&1 & | |||
| @@ -325,6 +325,8 @@ class BertSquad(nn.Cell): | |||
| total_loss = (start_loss + end_loss) / 2.0 | |||
| else: | |||
| start_logits = self.squeeze(logits[:, :, 0:1]) | |||
| start_logits = start_logits + 100 * input_mask | |||
| end_logits = self.squeeze(logits[:, :, 1:2]) | |||
| end_logits = end_logits + 100 * input_mask | |||
| total_loss = (unique_id, start_logits, end_logits) | |||
| return total_loss | |||
| @@ -0,0 +1,309 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """create squad data""" | |||
| import collections | |||
| import json | |||
| from src import tokenization | |||
| class SquadExample(): | |||
| """extract column contents from raw data""" | |||
| def __init__(self, | |||
| qas_id, | |||
| question_text, | |||
| doc_tokens, | |||
| orig_answer_text=None, | |||
| start_position=None, | |||
| end_position=None, | |||
| is_impossible=False): | |||
| self.qas_id = qas_id | |||
| self.question_text = question_text | |||
| self.doc_tokens = doc_tokens | |||
| self.orig_answer_text = orig_answer_text | |||
| self.start_position = start_position | |||
| self.end_position = end_position | |||
| self.is_impossible = is_impossible | |||
| class InputFeatures(): | |||
| """A single set of features of data.""" | |||
| def __init__(self, | |||
| unique_id, | |||
| example_index, | |||
| doc_span_index, | |||
| tokens, | |||
| token_to_orig_map, | |||
| token_is_max_context, | |||
| input_ids, | |||
| input_mask, | |||
| segment_ids, | |||
| start_position=None, | |||
| end_position=None, | |||
| is_impossible=None): | |||
| self.unique_id = unique_id | |||
| self.example_index = example_index | |||
| self.doc_span_index = doc_span_index | |||
| self.tokens = tokens | |||
| self.token_to_orig_map = token_to_orig_map | |||
| self.token_is_max_context = token_is_max_context | |||
| self.input_ids = input_ids | |||
| self.input_mask = input_mask | |||
| self.segment_ids = segment_ids | |||
| self.start_position = start_position | |||
| self.end_position = end_position | |||
| self.is_impossible = is_impossible | |||
| def read_squad_examples(input_file, is_training, version_2_with_negative=False): | |||
| """Return list of SquadExample from input_data or input_file (SQuAD json file)""" | |||
| with open(input_file, "r") as reader: | |||
| input_data = json.load(reader)["data"] | |||
| def is_whitespace(c): | |||
| if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: | |||
| return True | |||
| return False | |||
| def token_offset(text): | |||
| doc_tokens = [] | |||
| char_to_word_offset = [] | |||
| prev_is_whitespace = True | |||
| for c in paragraph_text: | |||
| if is_whitespace(c): | |||
| prev_is_whitespace = True | |||
| else: | |||
| if prev_is_whitespace: | |||
| doc_tokens.append(c) | |||
| else: | |||
| doc_tokens[-1] += c | |||
| prev_is_whitespace = False | |||
| char_to_word_offset.append(len(doc_tokens) - 1) | |||
| return (doc_tokens, char_to_word_offset) | |||
| def process_one_example(qa, is_training, version_2_with_negative, doc_tokens, char_to_word_offset): | |||
| qas_id = qa["id"] | |||
| question_text = qa["question"] | |||
| start_position = -1 | |||
| end_position = -1 | |||
| orig_answer_text = "" | |||
| is_impossible = False | |||
| if is_training: | |||
| if version_2_with_negative: | |||
| is_impossible = qa["is_impossible"] | |||
| if (len(qa["answers"]) != 1) and (not is_impossible): | |||
| raise ValueError("For training, each question should have exactly 1 answer.") | |||
| if not is_impossible: | |||
| answer = qa["answers"][0] | |||
| orig_answer_text = answer["text"] | |||
| answer_offset = answer["answer_start"] | |||
| answer_length = len(orig_answer_text) | |||
| start_position = char_to_word_offset[answer_offset] | |||
| end_position = char_to_word_offset[answer_offset + answer_length - 1] | |||
| actual_text = " ".join(doc_tokens[start_position:(end_position + 1)]) | |||
| cleaned_answer_text = " ".join(tokenization.whitespace_tokenize(orig_answer_text)) | |||
| if actual_text.find(cleaned_answer_text) == -1: | |||
| return None | |||
| example = SquadExample( | |||
| qas_id=qas_id, | |||
| question_text=question_text, | |||
| doc_tokens=doc_tokens, | |||
| orig_answer_text=orig_answer_text, | |||
| start_position=start_position, | |||
| end_position=end_position, | |||
| is_impossible=is_impossible) | |||
| return example | |||
| examples = [] | |||
| for entry in input_data: | |||
| for paragraph in entry["paragraphs"]: | |||
| paragraph_text = paragraph["context"] | |||
| doc_tokens, char_to_word_offset = token_offset(paragraph_text) | |||
| for qa in paragraph["qas"]: | |||
| one_example = process_one_example(qa, is_training, version_2_with_negative, | |||
| doc_tokens, char_to_word_offset) | |||
| if one_example is not None: | |||
| examples.append(one_example) | |||
| return examples | |||
| def _check_is_max_context(doc_spans, cur_span_index, position): | |||
| """Check if this is the 'max context' doc span for the token.""" | |||
| best_score = None | |||
| best_span_index = None | |||
| for (span_index, doc_span) in enumerate(doc_spans): | |||
| end = doc_span.start + doc_span.length - 1 | |||
| if position < doc_span.start: | |||
| continue | |||
| if position > end: | |||
| continue | |||
| num_left_context = position - doc_span.start | |||
| num_right_context = end - position | |||
| score = min(num_left_context, num_right_context) + 0.01 * doc_span.length | |||
| if best_score is None or score > best_score: | |||
| best_score = score | |||
| best_span_index = span_index | |||
| return cur_span_index == best_span_index | |||
| def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, | |||
| orig_answer_text): | |||
| """Returns tokenized answer spans that better match the annotated answer.""" | |||
| tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text)) | |||
| for new_start in range(input_start, input_end + 1): | |||
| for new_end in range(input_end, new_start - 1, -1): | |||
| text_span = " ".join(doc_tokens[new_start:(new_end + 1)]) | |||
| if text_span == tok_answer_text: | |||
| return (new_start, new_end) | |||
| return (input_start, input_end) | |||
| def convert_examples_to_features(examples, tokenizer, max_seq_length, doc_stride, | |||
| max_query_length, is_training, output_fn, vocab_file): | |||
| """Loads a data file into a list of `InputBatch`s.""" | |||
| unique_id = 1000000000 | |||
| output = [] | |||
| for (example_index, example) in enumerate(examples): | |||
| query_tokens = tokenizer.tokenize(example.question_text) | |||
| if len(query_tokens) > max_query_length: | |||
| query_tokens = query_tokens[0:max_query_length] | |||
| tok_to_orig_index = [] | |||
| orig_to_tok_index = [] | |||
| all_doc_tokens = [] | |||
| for (i, token) in enumerate(example.doc_tokens): | |||
| orig_to_tok_index.append(len(all_doc_tokens)) | |||
| sub_tokens = tokenizer.tokenize(token) | |||
| for sub_token in sub_tokens: | |||
| tok_to_orig_index.append(i) | |||
| all_doc_tokens.append(sub_token) | |||
| tok_start_position = None | |||
| tok_end_position = None | |||
| if is_training and example.is_impossible: | |||
| tok_start_position = -1 | |||
| tok_end_position = -1 | |||
| if is_training and not example.is_impossible: | |||
| tok_start_position = orig_to_tok_index[example.start_position] | |||
| if example.end_position < len(example.doc_tokens) - 1: | |||
| tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 | |||
| else: | |||
| tok_end_position = len(all_doc_tokens) - 1 | |||
| (tok_start_position, tok_end_position) = _improve_answer_span( | |||
| all_doc_tokens, tok_start_position, tok_end_position, tokenizer, | |||
| example.orig_answer_text) | |||
| # The -3 accounts for [CLS], [SEP] and [SEP] | |||
| max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 | |||
| # We can have documents that are longer than the maximum sequence length. | |||
| # To deal with this we do a sliding window approach, where we take chunks | |||
| # of the up to our max length with a stride of `doc_stride`. | |||
| _DocSpan = collections.namedtuple("DocSpan", ["start", "length"]) | |||
| doc_spans = [] | |||
| start_offset = 0 | |||
| while start_offset < len(all_doc_tokens): | |||
| length = len(all_doc_tokens) - start_offset | |||
| if length > max_tokens_for_doc: | |||
| length = max_tokens_for_doc | |||
| doc_spans.append(_DocSpan(start=start_offset, length=length)) | |||
| if start_offset + length == len(all_doc_tokens): | |||
| break | |||
| start_offset += min(length, doc_stride) | |||
| for (doc_span_index, doc_span) in enumerate(doc_spans): | |||
| tokens = [] | |||
| token_to_orig_map = {} | |||
| token_is_max_context = {} | |||
| segment_ids = [] | |||
| tokens.append("[CLS]") | |||
| segment_ids.append(0) | |||
| for token in query_tokens: | |||
| tokens.append(token) | |||
| segment_ids.append(0) | |||
| tokens.append("[SEP]") | |||
| segment_ids.append(0) | |||
| for i in range(doc_span.length): | |||
| split_token_index = doc_span.start + i | |||
| token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index] | |||
| is_max_context = _check_is_max_context(doc_spans, doc_span_index, split_token_index) | |||
| token_is_max_context[len(tokens)] = is_max_context | |||
| tokens.append(all_doc_tokens[split_token_index]) | |||
| segment_ids.append(1) | |||
| tokens.append("[SEP]") | |||
| segment_ids.append(1) | |||
| input_ids = tokenization.convert_tokens_to_ids(vocab_file, tokens) | |||
| # The mask has 1 for real tokens and 0 for padding tokens. Only real | |||
| # tokens are attended to. | |||
| input_mask = [1] * len(input_ids) | |||
| # Zero-pad up to the sequence length. | |||
| while len(input_ids) < max_seq_length: | |||
| input_ids.append(0) | |||
| input_mask.append(0) | |||
| segment_ids.append(0) | |||
| assert len(input_ids) == max_seq_length | |||
| assert len(input_mask) == max_seq_length | |||
| assert len(segment_ids) == max_seq_length | |||
| start_position = None | |||
| end_position = None | |||
| if is_training and not example.is_impossible: | |||
| # For training, if our document chunk does not contain an annotation | |||
| # we throw it out, since there is nothing to predict. | |||
| doc_start = doc_span.start | |||
| doc_end = doc_span.start + doc_span.length - 1 | |||
| out_of_span = False | |||
| if not (tok_start_position >= doc_start and tok_end_position <= doc_end): | |||
| out_of_span = True | |||
| if out_of_span: | |||
| start_position = 0 | |||
| end_position = 0 | |||
| else: | |||
| doc_offset = len(query_tokens) + 2 | |||
| start_position = tok_start_position - doc_start + doc_offset | |||
| end_position = tok_end_position - doc_start + doc_offset | |||
| if is_training and example.is_impossible: | |||
| start_position = 0 | |||
| end_position = 0 | |||
| feature = InputFeatures( | |||
| unique_id=unique_id, | |||
| example_index=example_index, | |||
| doc_span_index=doc_span_index, | |||
| tokens=tokens, | |||
| token_to_orig_map=token_to_orig_map, | |||
| token_is_max_context=token_is_max_context, | |||
| input_ids=input_ids, | |||
| input_mask=input_mask, | |||
| segment_ids=segment_ids, | |||
| start_position=start_position, | |||
| end_position=end_position, | |||
| is_impossible=example.is_impossible) | |||
| # Run callback | |||
| output.append(feature) | |||
| unique_id += 1 | |||
| return output | |||
| @@ -92,6 +92,11 @@ def create_classification_dataset(batch_size=1, repeat_count=1, assessment_metho | |||
| return ds | |||
| def generator_squad(data_features): | |||
| for feature in data_features: | |||
| yield (feature.input_ids, feature.input_mask, feature.segment_ids, feature.unique_id) | |||
| def create_squad_dataset(batch_size=1, repeat_count=1, data_file_path=None, schema_file_path=None, | |||
| is_training=True, do_shuffle=True): | |||
| """create finetune or evaluation dataset""" | |||
| @@ -104,11 +109,12 @@ def create_squad_dataset(batch_size=1, repeat_count=1, data_file_path=None, sche | |||
| ds = ds.map(operations=type_cast_op, input_columns="start_positions") | |||
| ds = ds.map(operations=type_cast_op, input_columns="end_positions") | |||
| else: | |||
| ds = de.TFRecordDataset([data_file_path], schema_file_path if schema_file_path != "" else None, | |||
| columns_list=["input_ids", "input_mask", "segment_ids", "unique_ids"]) | |||
| ds = de.GeneratorDataset(generator_squad(data_file_path), shuffle=do_shuffle, | |||
| column_names=["input_ids", "input_mask", "segment_ids", "unique_ids"]) | |||
| ds = ds.map(operations=type_cast_op, input_columns="segment_ids") | |||
| ds = ds.map(operations=type_cast_op, input_columns="input_mask") | |||
| ds = ds.map(operations=type_cast_op, input_columns="input_ids") | |||
| ds = ds.map(operations=type_cast_op, input_columns="unique_ids") | |||
| ds = ds.repeat(repeat_count) | |||
| # apply batch operations | |||
| ds = ds.batch(batch_size, drop_remainder=True) | |||
| @@ -22,7 +22,6 @@ import mindspore.common.dtype as mstype | |||
| from .bert_model import BertConfig | |||
| optimizer_cfg = edict({ | |||
| 'batch_size': 16, | |||
| 'optimizer': 'Lamb', | |||
| 'AdamWeightDecay': edict({ | |||
| 'learning_rate': 2e-5, | |||
| @@ -0,0 +1,258 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """get predictions for squad""" | |||
| import math | |||
| import collections | |||
| import six | |||
| from src import tokenization | |||
| def get_prelim_predictions(features, unique_id_to_result, n_best_size, max_answer_length): | |||
| """get prelim predictions""" | |||
| _PrelimPrediction = collections.namedtuple( | |||
| "PrelimPrediction", | |||
| ["feature_index", "start_index", "end_index", "start_logit", "end_logit"]) | |||
| prelim_predictions = [] | |||
| # keep track of the minimum score of null start+end of position 0 | |||
| for (feature_index, feature) in enumerate(features): | |||
| if feature.unique_id not in unique_id_to_result: | |||
| continue | |||
| result = unique_id_to_result[feature.unique_id] | |||
| start_indexes = _get_best_indexes(result.start_logits, n_best_size) | |||
| end_indexes = _get_best_indexes(result.end_logits, n_best_size) | |||
| # if we could have irrelevant answers, get the min score of irrelevant | |||
| for start_index in start_indexes: | |||
| for end_index in end_indexes: | |||
| # We could hypothetically create invalid predictions, e.g., predict | |||
| # that the start of the span is in the question. We throw out all | |||
| # invalid predictions. | |||
| if start_index >= len(feature.tokens): | |||
| continue | |||
| if end_index >= len(feature.tokens): | |||
| continue | |||
| if start_index not in feature.token_to_orig_map: | |||
| continue | |||
| if end_index not in feature.token_to_orig_map: | |||
| continue | |||
| if not feature.token_is_max_context.get(start_index, False): | |||
| continue | |||
| if end_index < start_index: | |||
| continue | |||
| length = end_index - start_index + 1 | |||
| if length > max_answer_length: | |||
| continue | |||
| prelim_predictions.append( | |||
| _PrelimPrediction( | |||
| feature_index=feature_index, | |||
| start_index=start_index, | |||
| end_index=end_index, | |||
| start_logit=result.start_logits[start_index], | |||
| end_logit=result.end_logits[end_index])) | |||
| prelim_predictions = sorted( | |||
| prelim_predictions, | |||
| key=lambda x: (x.start_logit + x.end_logit), | |||
| reverse=True) | |||
| return prelim_predictions | |||
| def get_nbest(prelim_predictions, features, example, n_best_size, do_lower_case): | |||
| """get nbest predictions""" | |||
| _NbestPrediction = collections.namedtuple( | |||
| "NbestPrediction", ["text", "start_logit", "end_logit"]) | |||
| seen_predictions = {} | |||
| nbest = [] | |||
| for pred in prelim_predictions: | |||
| if len(nbest) >= n_best_size: | |||
| break | |||
| feature = features[pred.feature_index] | |||
| if pred.start_index > 0: # this is a non-null prediction | |||
| tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)] | |||
| orig_doc_start = feature.token_to_orig_map[pred.start_index] | |||
| orig_doc_end = feature.token_to_orig_map[pred.end_index] | |||
| orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)] | |||
| tok_text = " ".join(tok_tokens) | |||
| # De-tokenize WordPieces that have been split off. | |||
| tok_text = tok_text.replace(" ##", "") | |||
| tok_text = tok_text.replace("##", "") | |||
| # Clean whitespace | |||
| tok_text = tok_text.strip() | |||
| tok_text = " ".join(tok_text.split()) | |||
| orig_text = " ".join(orig_tokens) | |||
| final_text = get_final_text(tok_text, orig_text, do_lower_case) | |||
| if final_text in seen_predictions: | |||
| continue | |||
| seen_predictions[final_text] = True | |||
| else: | |||
| final_text = "" | |||
| seen_predictions[final_text] = True | |||
| nbest.append( | |||
| _NbestPrediction( | |||
| text=final_text, | |||
| start_logit=pred.start_logit, | |||
| end_logit=pred.end_logit)) | |||
| # In very rare edge cases we could have no valid predictions. So we | |||
| # just create a nonce prediction in this case to avoid failure. | |||
| if not nbest: | |||
| nbest.append(_NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) | |||
| assert len(nbest) >= 1 | |||
| return nbest | |||
| def get_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case): | |||
| """Get final predictions""" | |||
| example_index_to_features = collections.defaultdict(list) | |||
| for feature in all_features: | |||
| example_index_to_features[feature.example_index].append(feature) | |||
| unique_id_to_result = {} | |||
| for result in all_results: | |||
| unique_id_to_result[result.unique_id] = result | |||
| all_predictions = collections.OrderedDict() | |||
| for (example_index, example) in enumerate(all_examples): | |||
| features = example_index_to_features[example_index] | |||
| prelim_predictions = get_prelim_predictions(features, unique_id_to_result, n_best_size, max_answer_length) | |||
| nbest = get_nbest(prelim_predictions, features, example, n_best_size, do_lower_case) | |||
| total_scores = [] | |||
| best_non_null_entry = None | |||
| for entry in nbest: | |||
| total_scores.append(entry.start_logit + entry.end_logit) | |||
| if not best_non_null_entry: | |||
| if entry.text: | |||
| best_non_null_entry = entry | |||
| probs = _compute_softmax(total_scores) | |||
| nbest_json = [] | |||
| for (i, entry) in enumerate(nbest): | |||
| output = collections.OrderedDict() | |||
| output["text"] = entry.text | |||
| output["probability"] = probs[i] | |||
| output["start_logit"] = entry.start_logit | |||
| output["end_logit"] = entry.end_logit | |||
| nbest_json.append(output) | |||
| assert len(nbest_json) >= 1 | |||
| all_predictions[example.qas_id] = nbest_json[0]["text"] | |||
| return all_predictions | |||
| def write_predictions(all_examples, all_features, all_results, n_best_size, | |||
| max_answer_length, do_lower_case): | |||
| """Write final predictions to the json file and log-odds of null if needed.""" | |||
| all_predictions = get_predictions(all_examples, all_features, all_results, | |||
| n_best_size, max_answer_length, do_lower_case) | |||
| return all_predictions | |||
| def get_final_text(pred_text, orig_text, do_lower_case): | |||
| """Project the tokenized prediction back to the original text.""" | |||
| def _strip_spaces(text): | |||
| ns_chars = [] | |||
| ns_to_s_map = collections.OrderedDict() | |||
| for (i, c) in enumerate(text): | |||
| if c == " ": | |||
| continue | |||
| ns_to_s_map[len(ns_chars)] = i | |||
| ns_chars.append(c) | |||
| ns_text = "".join(ns_chars) | |||
| return (ns_text, ns_to_s_map) | |||
| tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case) | |||
| tok_text = " ".join(tokenizer.tokenize(orig_text)) | |||
| start_position = tok_text.find(pred_text) | |||
| if start_position == -1: | |||
| return orig_text | |||
| end_position = start_position + len(pred_text) - 1 | |||
| (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) | |||
| (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) | |||
| if len(orig_ns_text) != len(tok_ns_text): | |||
| return orig_text | |||
| tok_s_to_ns_map = {} | |||
| for (i, tok_index) in six.iteritems(tok_ns_to_s_map): | |||
| tok_s_to_ns_map[tok_index] = i | |||
| orig_start_position = None | |||
| if start_position in tok_s_to_ns_map: | |||
| ns_start_position = tok_s_to_ns_map[start_position] | |||
| if ns_start_position in orig_ns_to_s_map: | |||
| orig_start_position = orig_ns_to_s_map[ns_start_position] | |||
| if orig_start_position is None: | |||
| return orig_text | |||
| orig_end_position = None | |||
| if end_position in tok_s_to_ns_map: | |||
| ns_end_position = tok_s_to_ns_map[end_position] | |||
| if ns_end_position in orig_ns_to_s_map: | |||
| orig_end_position = orig_ns_to_s_map[ns_end_position] | |||
| if orig_end_position is None: | |||
| return orig_text | |||
| output_text = orig_text[orig_start_position:(orig_end_position + 1)] | |||
| return output_text | |||
| def _get_best_indexes(logits, n_best_size): | |||
| """Get the n-best logits from a list.""" | |||
| index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) | |||
| best_indexes = [] | |||
| for (i, score) in enumerate(index_and_score): | |||
| if i >= n_best_size: | |||
| break | |||
| best_indexes.append(score[0]) | |||
| return best_indexes | |||
| def _compute_softmax(scores): | |||
| """Compute softmax probability over raw logits.""" | |||
| if not scores: | |||
| return [] | |||
| max_score = None | |||
| for score in scores: | |||
| if max_score is None or score > max_score: | |||
| max_score = score | |||
| exp_scores = [] | |||
| total_sum = 0.0 | |||
| for score in scores: | |||
| x = math.exp(score - max_score) | |||
| exp_scores.append(x) | |||
| total_sum += x | |||
| probs = [] | |||
| for score in exp_scores: | |||
| probs.append(score / total_sum) | |||
| return probs | |||
| @@ -0,0 +1,97 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """evaluation script for SQuAD v1.1""" | |||
| from collections import Counter | |||
| import string | |||
| import re | |||
| import json | |||
| import sys | |||
| def normalize_answer(s): | |||
| """Lower text and remove punctuation, articles and extra whitespace.""" | |||
| def remove_articles(text): | |||
| return re.sub(r'\b(a|an|the)\b', ' ', text) | |||
| def white_space_fix(text): | |||
| return ' '.join(text.split()) | |||
| def remove_punc(text): | |||
| exclude = set(string.punctuation) | |||
| return ''.join(ch for ch in text if ch not in exclude) | |||
| def lower(text): | |||
| return text.lower() | |||
| return white_space_fix(remove_articles(remove_punc(lower(s)))) | |||
| def f1_score(prediction, ground_truth): | |||
| """calculate f1 score""" | |||
| prediction_tokens = normalize_answer(prediction).split() | |||
| ground_truth_tokens = normalize_answer(ground_truth).split() | |||
| common = Counter(prediction_tokens) & Counter(ground_truth_tokens) | |||
| num_same = sum(common.values()) | |||
| if num_same == 0: | |||
| return 0 | |||
| precision = 1.0 * num_same / len(prediction_tokens) | |||
| recall = 1.0 * num_same / len(ground_truth_tokens) | |||
| f1 = (2 * precision * recall) / (precision + recall) | |||
| return f1 | |||
| def exact_match_score(prediction, ground_truth): | |||
| return normalize_answer(prediction) == normalize_answer(ground_truth) | |||
| def metric_max_over_ground_truths(metric_fn, prediction, ground_truths): | |||
| scores_for_ground_truths = [] | |||
| for ground_truth in ground_truths: | |||
| score = metric_fn(prediction, ground_truth) | |||
| scores_for_ground_truths.append(score) | |||
| return max(scores_for_ground_truths) | |||
| def evaluate(dataset, predictions): | |||
| """do evaluation""" | |||
| f1 = exact_match = total = 0 | |||
| for article in dataset: | |||
| for paragraph in article['paragraphs']: | |||
| for qa in paragraph['qas']: | |||
| total += 1 | |||
| if qa['id'] not in predictions: | |||
| message = 'Unanswered question ' + qa['id'] + \ | |||
| ' will receive score 0.' | |||
| print(message, file=sys.stderr) | |||
| continue | |||
| ground_truths = list(map(lambda x: x['text'], qa['answers'])) | |||
| if not ground_truths: | |||
| continue | |||
| prediction = predictions[qa['id']] | |||
| exact_match += metric_max_over_ground_truths( | |||
| exact_match_score, prediction, ground_truths) | |||
| f1 += metric_max_over_ground_truths( | |||
| f1_score, prediction, ground_truths) | |||
| exact_match = 100.0 * exact_match / total | |||
| f1 = 100.0 * f1 / total | |||
| return {'exact_match': exact_match, 'f1': f1} | |||
| def SQuad_postprocess(dataset_file, all_predictions, output_metrics="output.json"): | |||
| with open(dataset_file) as ds: | |||
| dataset_json = json.load(ds) | |||
| dataset = dataset_json['data'] | |||
| re_json = evaluate(dataset, all_predictions) | |||
| print(json.dumps(re_json)) | |||
| with open(output_metrics, 'w') as wr: | |||
| wr.write(json.dumps(re_json)) | |||