You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 10 kB

5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train resnet."""
  16. import os
  17. import argparse
  18. import ast
  19. from mindspore import context
  20. from mindspore import Tensor
  21. from mindspore.nn.optim.momentum import Momentum
  22. from mindspore.train.model import Model
  23. from mindspore.context import ParallelMode
  24. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
  25. from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
  26. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  27. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  28. from mindspore.communication.management import init, get_rank, get_group_size
  29. from mindspore.common import set_seed
  30. from mindspore.parallel import set_algo_parameters
  31. import mindspore.nn as nn
  32. import mindspore.common.initializer as weight_init
  33. from src.lr_generator import get_lr, warmup_cosine_annealing_lr
  34. from src.CrossEntropySmooth import CrossEntropySmooth
  35. parser = argparse.ArgumentParser(description='Image classification')
  36. parser.add_argument('--net', type=str, default=None, help='Resnet Model, either resnet50 or resnet101')
  37. parser.add_argument('--dataset', type=str, default=None, help='Dataset, either cifar10 or imagenet2012')
  38. parser.add_argument('--run_distribute', type=ast.literal_eval, default=False, help='Run distribute')
  39. parser.add_argument('--device_num', type=int, default=1, help='Device num.')
  40. parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
  41. parser.add_argument('--device_target', type=str, default='Ascend', choices=("Ascend", "GPU", "CPU"),
  42. help="Device target, support Ascend, GPU and CPU.")
  43. parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
  44. parser.add_argument('--parameter_server', type=ast.literal_eval, default=False, help='Run parameter server train')
  45. args_opt = parser.parse_args()
  46. set_seed(1)
  47. if args_opt.net == "resnet50":
  48. from src.resnet import resnet50 as resnet
  49. if args_opt.dataset == "cifar10":
  50. from src.config import config1 as config
  51. from src.dataset import create_dataset1 as create_dataset
  52. else:
  53. from src.config import config2 as config
  54. from src.dataset import create_dataset2 as create_dataset
  55. elif args_opt.net == "resnet101":
  56. from src.resnet import resnet101 as resnet
  57. from src.config import config3 as config
  58. from src.dataset import create_dataset3 as create_dataset
  59. else:
  60. from src.resnet import se_resnet50 as resnet
  61. from src.config import config4 as config
  62. from src.dataset import create_dataset4 as create_dataset
  63. if __name__ == '__main__':
  64. target = args_opt.device_target
  65. if target == "CPU":
  66. args_opt.run_distribute = False
  67. ckpt_save_dir = config.save_checkpoint_path
  68. # init context
  69. context.set_context(mode=context.GRAPH_MODE, device_target=target, save_graphs=False)
  70. if args_opt.parameter_server:
  71. context.set_ps_context(enable_ps=True)
  72. if args_opt.run_distribute:
  73. if target == "Ascend":
  74. device_id = int(os.getenv('DEVICE_ID'))
  75. context.set_context(device_id=device_id, enable_auto_mixed_precision=True)
  76. context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
  77. gradients_mean=True)
  78. set_algo_parameters(elementwise_op_strategy_follow=True)
  79. if args_opt.net == "resnet50" or args_opt.net == "se-resnet50":
  80. context.set_auto_parallel_context(all_reduce_fusion_config=[85, 160])
  81. else:
  82. context.set_auto_parallel_context(all_reduce_fusion_config=[180, 313])
  83. init()
  84. # GPU target
  85. else:
  86. init()
  87. context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL,
  88. gradients_mean=True)
  89. if args_opt.net == "resnet50":
  90. context.set_auto_parallel_context(all_reduce_fusion_config=[85, 160])
  91. ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str(get_rank()) + "/"
  92. # create dataset
  93. dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, repeat_num=1,
  94. batch_size=config.batch_size, target=target, distribute=args_opt.run_distribute)
  95. step_size = dataset.get_dataset_size()
  96. # define net
  97. net = resnet(class_num=config.class_num)
  98. if args_opt.parameter_server:
  99. net.set_param_ps()
  100. # init weight
  101. if args_opt.pre_trained:
  102. param_dict = load_checkpoint(args_opt.pre_trained)
  103. load_param_into_net(net, param_dict)
  104. else:
  105. for _, cell in net.cells_and_names():
  106. if isinstance(cell, nn.Conv2d):
  107. cell.weight.set_data(weight_init.initializer(weight_init.XavierUniform(),
  108. cell.weight.shape,
  109. cell.weight.dtype))
  110. if isinstance(cell, nn.Dense):
  111. cell.weight.set_data(weight_init.initializer(weight_init.TruncatedNormal(),
  112. cell.weight.shape,
  113. cell.weight.dtype))
  114. # init lr
  115. if args_opt.net == "resnet50" or args_opt.net == "se-resnet50":
  116. lr = get_lr(lr_init=config.lr_init, lr_end=config.lr_end, lr_max=config.lr_max,
  117. warmup_epochs=config.warmup_epochs, total_epochs=config.epoch_size, steps_per_epoch=step_size,
  118. lr_decay_mode=config.lr_decay_mode)
  119. else:
  120. lr = warmup_cosine_annealing_lr(config.lr, step_size, config.warmup_epochs, config.epoch_size,
  121. config.pretrain_epoch_size * step_size)
  122. lr = Tensor(lr)
  123. # define opt
  124. decayed_params = []
  125. no_decayed_params = []
  126. for param in net.trainable_params():
  127. if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
  128. decayed_params.append(param)
  129. else:
  130. no_decayed_params.append(param)
  131. group_params = [{'params': decayed_params, 'weight_decay': config.weight_decay},
  132. {'params': no_decayed_params},
  133. {'order_params': net.trainable_params()}]
  134. opt = Momentum(group_params, lr, config.momentum, loss_scale=config.loss_scale)
  135. # define loss, model
  136. if target == "Ascend":
  137. if args_opt.dataset == "imagenet2012":
  138. if not config.use_label_smooth:
  139. config.label_smooth_factor = 0.0
  140. loss = CrossEntropySmooth(sparse=True, reduction="mean",
  141. smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
  142. else:
  143. loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
  144. loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
  145. model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
  146. amp_level="O2", keep_batchnorm_fp32=False)
  147. else:
  148. # GPU and CPU target
  149. if args_opt.dataset == "imagenet2012":
  150. if not config.use_label_smooth:
  151. config.label_smooth_factor = 0.0
  152. loss = CrossEntropySmooth(sparse=True, reduction="mean",
  153. smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
  154. else:
  155. loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
  156. if (args_opt.net == "resnet101" or args_opt.net == "resnet50") and \
  157. not args_opt.parameter_server and target != "CPU":
  158. opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, config.weight_decay,
  159. config.loss_scale)
  160. loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
  161. # Mixed precision
  162. model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
  163. amp_level="O2", keep_batchnorm_fp32=False)
  164. else:
  165. ## fp32 training
  166. opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, config.weight_decay)
  167. model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
  168. # define callbacks
  169. time_cb = TimeMonitor(data_size=step_size)
  170. loss_cb = LossMonitor()
  171. cb = [time_cb, loss_cb]
  172. if config.save_checkpoint:
  173. config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
  174. keep_checkpoint_max=config.keep_checkpoint_max)
  175. ckpt_cb = ModelCheckpoint(prefix="resnet", directory=ckpt_save_dir, config=config_ck)
  176. cb += [ckpt_cb]
  177. # train model
  178. if args_opt.net == "se-resnet50":
  179. config.epoch_size = config.train_epoch_size
  180. dataset_sink_mode = (not args_opt.parameter_server) and target != "CPU"
  181. model.train(config.epoch_size - config.pretrain_epoch_size, dataset, callbacks=cb,
  182. sink_size=dataset.get_dataset_size(), dataset_sink_mode=dataset_sink_mode)