| @@ -30,7 +30,9 @@ from mindspore import Tensor | |||
| from mindspore.train import Model | |||
| from mindspore.nn.metrics import Accuracy | |||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor | |||
| from mindspore.common import set_seed | |||
| set_seed(1) | |||
| if __name__ == "__main__": | |||
| parser = argparse.ArgumentParser(description='MindSpore AlexNet Example') | |||
| @@ -21,11 +21,14 @@ from mindspore import Model | |||
| from mindspore.context import ParallelMode | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| from mindspore.train.callback import Callback, CheckpointConfig, ModelCheckpoint, TimeMonitor | |||
| from mindspore.common import set_seed | |||
| from src.md_dataset import create_dataset | |||
| from src.losses import OhemLoss | |||
| from src.deeplabv3 import deeplabv3_resnet50 | |||
| from src.config import config | |||
| set_seed(1) | |||
| parser = argparse.ArgumentParser(description="Deeplabv3 training") | |||
| parser.add_argument("--distribute", type=str, default="false", help="Run distribute, default is false.") | |||
| parser.add_argument('--data_url', required=True, default=None, help='Train data url') | |||
| @@ -87,7 +87,9 @@ Dataset used: [COCO2017](<http://images.cocodataset.org/>) | |||
| After installing MindSpore via the official website, you can start training and evaluation as follows: | |||
| Note: 1.the first run will generate the mindeocrd file, which will take a long time. 2. pretrained model is a resnet50 checkpoint that trained over ImageNet2012. 3. VALIDATION_JSON_FILE is label file. CHECKPOINT_PATH is a checkpoint file after trained. | |||
| Note: 1.the first run will generate the mindeocrd file, which will take a long time. | |||
| 2.pretrained model is a resnet50 checkpoint that trained over ImageNet2012. | |||
| 3.VALIDATION_JSON_FILE is label file. CHECKPOINT_PATH is a checkpoint file after trained. | |||
| ``` | |||
| # standalone training | |||
| @@ -106,7 +108,7 @@ sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] | |||
| ```shell | |||
| . | |||
| └─FasterRcnn | |||
| └─faster_rcnn | |||
| ├─README.md // descriptions about fasterrcnn | |||
| ├─scripts | |||
| ├─run_standalone_train_ascend.sh // shell script for standalone on ascend | |||
| @@ -148,6 +150,7 @@ sh run_distribute_train_ascend.sh [RANK_TABLE_FILE] [PRETRAINED_MODEL] | |||
| > Rank_table.json which is specified by RANK_TABLE_FILE is needed when you are running a distribute task. You can generate it by using the [hccl_tools](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools). | |||
| > As for PRETRAINED_MODEL,it should be a ResNet50 checkpoint that trained over ImageNet2012. Ready-made pretrained_models are not available now. Stay tuned. | |||
| > The original dataset path needs to be in the config.py,you can select "coco_root" or "image_dir". | |||
| ### Result | |||
| @@ -205,10 +208,10 @@ Eval result will be stored in the example path, whose folder name is "eval". Und | |||
| | -------------------------- | ----------------------------------------------------------- | | |||
| | Model Version | V1 | | |||
| | Resource | Ascend 910 ;CPU 2.60GHz,56cores;Memory,314G | | |||
| | uploaded Date | 06/01/2020 (month/day/year) | | |||
| | MindSpore Version | 0.3.0-alpha | | |||
| | uploaded Date | 08/31/2020 (month/day/year) | | |||
| | MindSpore Version | 0.7.0-beta | | |||
| | Dataset | COCO2017 | | |||
| | Training Parameters | epoch=12, batch_size = 2 | | |||
| | Training Parameters | epoch=12, batch_size=2 | | |||
| | Optimizer | SGD | | |||
| | Loss Function | Softmax Cross Entropy ,Sigmoid Cross Entropy,SmoothL1Loss | | |||
| | Speed | 1pc: 190 ms/step; 8pcs: 200 ms/step | | |||
| @@ -223,12 +226,12 @@ Eval result will be stored in the example path, whose folder name is "eval". Und | |||
| | ------------------- | --------------------------- | | |||
| | Model Version | V1 | | |||
| | Resource | Ascend 910 | | |||
| | Uploaded Date | 06/01/2020 (month/day/year) | | |||
| | MindSpore Version | 0.3.0-alpha | | |||
| | Uploaded Date | 08/31/2020 (month/day/year) | | |||
| | MindSpore Version | 0.7.0-beta | | |||
| | Dataset | COCO2017 | | |||
| | batch_size | 2 | | |||
| | outputs | mAP | | |||
| | Accuracy | IoU=0.50: 58.6% | | |||
| | Accuracy | IoU=0.50: 57.6% | | |||
| | Model for inference | 250M (.ckpt file) | | |||
| # [ModelZoo Homepage](#contents) | |||
| @@ -17,21 +17,18 @@ | |||
| import os | |||
| import argparse | |||
| import time | |||
| import random | |||
| import numpy as np | |||
| from pycocotools.coco import COCO | |||
| from mindspore import context, Tensor | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| import mindspore.dataset.engine as de | |||
| from mindspore.common import set_seed | |||
| from src.FasterRcnn.faster_rcnn_r50 import Faster_Rcnn_Resnet50 | |||
| from src.config import config | |||
| from src.dataset import data_to_mindrecord_byte_image, create_fasterrcnn_dataset | |||
| from src.util import coco_eval, bbox2result_1image, results2json | |||
| random.seed(1) | |||
| np.random.seed(1) | |||
| de.config.set_seed(1) | |||
| set_seed(1) | |||
| parser = argparse.ArgumentParser(description="FasterRcnn evaluation") | |||
| parser.add_argument("--dataset", type=str, default="coco", help="Dataset, default is coco.") | |||
| @@ -19,8 +19,6 @@ import os | |||
| import time | |||
| import argparse | |||
| import ast | |||
| import random | |||
| import numpy as np | |||
| import mindspore.common.dtype as mstype | |||
| from mindspore import context, Tensor | |||
| @@ -30,7 +28,7 @@ from mindspore.train import Model | |||
| from mindspore.context import ParallelMode | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| from mindspore.nn import SGD | |||
| import mindspore.dataset.engine as de | |||
| from mindspore.common import set_seed | |||
| from src.FasterRcnn.faster_rcnn_r50 import Faster_Rcnn_Resnet50 | |||
| from src.network_define import LossCallBack, WithLossCell, TrainOneStepCell, LossNet | |||
| @@ -38,9 +36,7 @@ from src.config import config | |||
| from src.dataset import data_to_mindrecord_byte_image, create_fasterrcnn_dataset | |||
| from src.lr_schedule import dynamic_lr | |||
| random.seed(1) | |||
| np.random.seed(1) | |||
| de.config.set_seed(1) | |||
| set_seed(1) | |||
| parser = argparse.ArgumentParser(description="FasterRcnn training") | |||
| parser.add_argument("--run_distribute", type=ast.literal_eval, default=False, help="Run distribute, default: false.") | |||
| @@ -78,18 +74,24 @@ if __name__ == '__main__': | |||
| os.makedirs(mindrecord_dir) | |||
| if args_opt.dataset == "coco": | |||
| if os.path.isdir(config.coco_root): | |||
| if not os.path.exists(config.coco_root): | |||
| print("Please make sure config:coco_root is valid.") | |||
| raise ValueError(config.coco_root) | |||
| print("Create Mindrecord. It may take some time.") | |||
| data_to_mindrecord_byte_image("coco", True, prefix) | |||
| print("Create Mindrecord Done, at {}".format(mindrecord_dir)) | |||
| else: | |||
| print("coco_root not exits.") | |||
| else: | |||
| if os.path.isdir(config.IMAGE_DIR) and os.path.exists(config.ANNO_PATH): | |||
| if os.path.isdir(config.image_dir) and os.path.exists(config.anno_path): | |||
| if not os.path.exists(config.image_dir): | |||
| print("Please make sure config:image_dir is valid.") | |||
| raise ValueError(config.image_dir) | |||
| print("Create Mindrecord. It may take some time.") | |||
| data_to_mindrecord_byte_image("other", True, prefix) | |||
| print("Create Mindrecord Done, at {}".format(mindrecord_dir)) | |||
| else: | |||
| print("IMAGE_DIR or ANNO_PATH not exits.") | |||
| print("image_dir or anno_path not exits.") | |||
| while not os.path.exists(mindrecord_file + ".db"): | |||
| time.sleep(5) | |||
| @@ -23,11 +23,14 @@ from mindspore import context | |||
| from mindspore.nn.optim.momentum import Momentum | |||
| from mindspore.train.model import Model | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| from mindspore.common import set_seed | |||
| from src.config import cifar_cfg as cfg | |||
| from src.dataset import create_dataset | |||
| from src.googlenet import GoogleNet | |||
| set_seed(1) | |||
| parser = argparse.ArgumentParser(description='googlenet') | |||
| parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') | |||
| args_opt = parser.parse_args() | |||
| @@ -18,7 +18,6 @@ python train.py | |||
| """ | |||
| import argparse | |||
| import os | |||
| import random | |||
| import numpy as np | |||
| @@ -31,13 +30,13 @@ from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMoni | |||
| from mindspore.train.model import Model | |||
| from mindspore.context import ParallelMode | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| from mindspore.common import set_seed | |||
| from src.config import cifar_cfg as cfg | |||
| from src.dataset import create_dataset | |||
| from src.googlenet import GoogleNet | |||
| random.seed(1) | |||
| np.random.seed(1) | |||
| set_seed(1) | |||
| def lr_steps(global_step, lr_max=None, total_epochs=None, steps_per_epoch=None): | |||
| """Set learning rate.""" | |||
| @@ -15,8 +15,6 @@ | |||
| """train_imagenet.""" | |||
| import argparse | |||
| import os | |||
| import random | |||
| import numpy as np | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| @@ -27,9 +25,9 @@ from mindspore.nn.optim.rmsprop import RMSProp | |||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor | |||
| from mindspore.train.model import Model | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| from mindspore import dataset as de | |||
| from mindspore.train.loss_scale_manager import FixedLossScaleManager | |||
| from mindspore.common.initializer import XavierUniform, initializer | |||
| from mindspore.common import set_seed | |||
| from src.config import config_gpu, config_ascend | |||
| from src.dataset import create_dataset | |||
| @@ -37,9 +35,7 @@ from src.inception_v3 import InceptionV3 | |||
| from src.lr_generator import get_lr | |||
| from src.loss import CrossEntropy | |||
| random.seed(1) | |||
| np.random.seed(1) | |||
| de.config.set_seed(1) | |||
| set_seed(1) | |||
| if __name__ == '__main__': | |||
| @@ -94,7 +90,6 @@ if __name__ == '__main__': | |||
| if args_opt.platform == "Ascend": | |||
| for param in net.trainable_params(): | |||
| if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name: | |||
| np.random.seed(seed=1) | |||
| param.set_parameter_data(initializer(XavierUniform(), param.data.shape, param.data.dtype)) | |||
| group_params = [{'params': decayed_params, 'weight_decay': cfg.weight_decay}, | |||
| {'params': no_decayed_params}, | |||
| @@ -29,7 +29,9 @@ from mindspore import context | |||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor | |||
| from mindspore.train import Model | |||
| from mindspore.nn.metrics import Accuracy | |||
| from mindspore.common import set_seed | |||
| set_seed(1) | |||
| if __name__ == "__main__": | |||
| parser = argparse.ArgumentParser(description='MindSpore Lenet Example') | |||
| @@ -28,11 +28,14 @@ from mindspore.train import Model | |||
| from mindspore.nn.metrics import Accuracy | |||
| from mindspore.train.quant import quant | |||
| from mindspore.train.quant.quant_utils import load_nonquant_param_into_quant_net | |||
| from mindspore.common import set_seed | |||
| from src.dataset import create_dataset | |||
| from src.config import mnist_cfg as cfg | |||
| from src.lenet_fusion import LeNet5 as LeNet5Fusion | |||
| from src.loss_monitor import LossMonitor | |||
| set_seed(1) | |||
| parser = argparse.ArgumentParser(description='MindSpore MNIST Example') | |||
| parser.add_argument('--device_target', type=str, default="Ascend", | |||
| choices=['Ascend', 'GPU'], | |||
| @@ -17,21 +17,18 @@ | |||
| import os | |||
| import argparse | |||
| import time | |||
| import random | |||
| import numpy as np | |||
| from pycocotools.coco import COCO | |||
| from mindspore import context, Tensor | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| import mindspore.dataset.engine as de | |||
| from mindspore.common import set_seed | |||
| from src.maskrcnn.mask_rcnn_r50 import Mask_Rcnn_Resnet50 | |||
| from src.config import config | |||
| from src.dataset import data_to_mindrecord_byte_image, create_maskrcnn_dataset | |||
| from src.util import coco_eval, bbox2result_1image, results2json, get_seg_masks | |||
| random.seed(1) | |||
| np.random.seed(1) | |||
| de.config.set_seed(1) | |||
| set_seed(1) | |||
| parser = argparse.ArgumentParser(description="MaskRcnn evaluation") | |||
| parser.add_argument("--dataset", type=str, default="coco", help="Dataset, default is coco.") | |||
| @@ -17,9 +17,7 @@ | |||
| import os | |||
| import argparse | |||
| import random | |||
| import ast | |||
| import numpy as np | |||
| import mindspore.common.dtype as mstype | |||
| from mindspore import context, Tensor | |||
| @@ -29,7 +27,7 @@ from mindspore.train import Model | |||
| from mindspore.context import ParallelMode | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| from mindspore.nn import SGD | |||
| import mindspore.dataset.engine as de | |||
| from mindspore.common import set_seed | |||
| from src.maskrcnn.mask_rcnn_r50 import Mask_Rcnn_Resnet50 | |||
| from src.network_define import LossCallBack, WithLossCell, TrainOneStepCell, LossNet | |||
| @@ -37,9 +35,7 @@ from src.config import config | |||
| from src.dataset import data_to_mindrecord_byte_image, create_maskrcnn_dataset | |||
| from src.lr_schedule import dynamic_lr | |||
| random.seed(1) | |||
| np.random.seed(1) | |||
| de.config.set_seed(1) | |||
| set_seed(1) | |||
| parser = argparse.ArgumentParser(description="MaskRcnn training") | |||
| parser.add_argument("--only_create_dataset", type=ast.literal_eval, default=False, help="If set it true, only create " | |||
| @@ -13,16 +13,12 @@ | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import random | |||
| import numpy as np | |||
| from mindspore import context | |||
| from mindspore import nn | |||
| from mindspore.common import dtype as mstype | |||
| from mindspore.train.model import ParallelMode | |||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig | |||
| from mindspore.communication.management import get_rank, init | |||
| from mindspore.dataset import engine as de | |||
| from src.models import Monitor | |||
| @@ -84,10 +80,3 @@ def config_ckpoint(config, lr, step_size): | |||
| ckpt_cb = ModelCheckpoint(prefix="mobilenetV2", directory=ckpt_save_dir, config=config_ck) | |||
| cb += [ckpt_cb] | |||
| return cb | |||
| def set_random_seed(seed=1): | |||
| random.seed(seed) | |||
| np.random.seed(seed) | |||
| de.config.set_seed(seed) | |||
| @@ -27,16 +27,17 @@ from mindspore.common import dtype as mstype | |||
| from mindspore.train.model import Model | |||
| from mindspore.train.loss_scale_manager import FixedLossScaleManager | |||
| from mindspore.train.serialization import _exec_save_checkpoint | |||
| from mindspore.common import set_seed | |||
| from src.dataset import create_dataset, extract_features | |||
| from src.lr_generator import get_lr | |||
| from src.config import set_config | |||
| from src.args import train_parse_args | |||
| from src.utils import set_random_seed, context_device_init, switch_precision, config_ckpoint | |||
| from src.utils import context_device_init, switch_precision, config_ckpoint | |||
| from src.models import CrossEntropyWithLabelSmooth, define_net | |||
| set_random_seed(1) | |||
| set_seed(1) | |||
| if __name__ == '__main__': | |||
| args_opt = train_parse_args() | |||
| @@ -16,8 +16,6 @@ | |||
| import os | |||
| import argparse | |||
| import random | |||
| import numpy as np | |||
| from mindspore import context | |||
| from mindspore import Tensor | |||
| @@ -30,7 +28,7 @@ from mindspore.train.serialization import load_checkpoint | |||
| from mindspore.communication.management import init, get_group_size, get_rank | |||
| from mindspore.train.quant import quant | |||
| from mindspore.train.quant.quant_utils import load_nonquant_param_into_quant_net | |||
| import mindspore.dataset.engine as de | |||
| from mindspore.common import set_seed | |||
| from src.dataset import create_dataset | |||
| from src.lr_generator import get_lr | |||
| @@ -38,9 +36,7 @@ from src.utils import Monitor, CrossEntropyWithLabelSmooth | |||
| from src.config import config_ascend_quant, config_gpu_quant | |||
| from src.mobilenetV2 import mobilenetV2 | |||
| random.seed(1) | |||
| np.random.seed(1) | |||
| de.config.set_seed(1) | |||
| set_seed(1) | |||
| parser = argparse.ArgumentParser(description='Image classification') | |||
| parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') | |||
| @@ -16,7 +16,6 @@ | |||
| import time | |||
| import argparse | |||
| import random | |||
| import numpy as np | |||
| from mindspore import context | |||
| @@ -33,7 +32,7 @@ from mindspore.context import ParallelMode | |||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, Callback | |||
| from mindspore.train.loss_scale_manager import FixedLossScaleManager | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| import mindspore.dataset.engine as de | |||
| from mindspore.common import set_seed | |||
| from mindspore.communication.management import init, get_group_size, get_rank | |||
| from src.dataset import create_dataset | |||
| @@ -41,9 +40,7 @@ from src.lr_generator import get_lr | |||
| from src.config import config_gpu | |||
| from src.mobilenetV3 import mobilenet_v3_large | |||
| random.seed(1) | |||
| np.random.seed(1) | |||
| de.config.set_seed(1) | |||
| set_seed(1) | |||
| parser = argparse.ArgumentParser(description='Image classification') | |||
| parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') | |||
| @@ -15,8 +15,6 @@ | |||
| """train imagenet.""" | |||
| import argparse | |||
| import os | |||
| import random | |||
| import numpy as np | |||
| from mindspore import Tensor | |||
| from mindspore import context | |||
| @@ -26,7 +24,7 @@ from mindspore.nn.optim.rmsprop import RMSProp | |||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor | |||
| from mindspore.train.model import Model | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| from mindspore import dataset as de | |||
| from mindspore.common import set_seed | |||
| from src.config import nasnet_a_mobile_config_gpu as cfg | |||
| from src.dataset import create_dataset | |||
| @@ -34,9 +32,7 @@ from src.nasnet_a_mobile import NASNetAMobileWithLoss, NASNetAMobileTrainOneStep | |||
| from src.lr_generator import get_lr | |||
| random.seed(cfg.random_seed) | |||
| np.random.seed(cfg.random_seed) | |||
| de.config.set_seed(cfg.random_seed) | |||
| set_seed(cfg.random_seed) | |||
| if __name__ == '__main__': | |||
| @@ -14,11 +14,9 @@ | |||
| # ============================================================================ | |||
| """train resnet.""" | |||
| import os | |||
| import random | |||
| import argparse | |||
| import numpy as np | |||
| from mindspore import context | |||
| from mindspore import dataset as de | |||
| from mindspore.common import set_seed | |||
| from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits | |||
| from mindspore.train.model import Model | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| @@ -33,9 +31,7 @@ parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path | |||
| parser.add_argument('--device_target', type=str, default='Ascend', help='Device target') | |||
| args_opt = parser.parse_args() | |||
| random.seed(1) | |||
| np.random.seed(1) | |||
| de.config.set_seed(1) | |||
| set_seed(1) | |||
| if args_opt.net == "resnet50": | |||
| from src.resnet import resnet50 as resnet | |||
| @@ -14,13 +14,10 @@ | |||
| # ============================================================================ | |||
| """train resnet.""" | |||
| import os | |||
| import random | |||
| import argparse | |||
| import ast | |||
| import numpy as np | |||
| from mindspore import context | |||
| from mindspore import Tensor | |||
| from mindspore import dataset as de | |||
| from mindspore.parallel._auto_parallel_context import auto_parallel_context | |||
| from mindspore.nn.optim.momentum import Momentum | |||
| from mindspore.train.model import Model | |||
| @@ -30,6 +27,7 @@ from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits | |||
| from mindspore.train.loss_scale_manager import FixedLossScaleManager | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| from mindspore.communication.management import init, get_rank, get_group_size | |||
| from mindspore.common import set_seed | |||
| import mindspore.nn as nn | |||
| import mindspore.common.initializer as weight_init | |||
| from src.lr_generator import get_lr, warmup_cosine_annealing_lr | |||
| @@ -47,9 +45,7 @@ parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained ch | |||
| parser.add_argument('--parameter_server', type=ast.literal_eval, default=False, help='Run parameter server train') | |||
| args_opt = parser.parse_args() | |||
| random.seed(1) | |||
| np.random.seed(1) | |||
| de.config.set_seed(1) | |||
| set_seed(1) | |||
| if args_opt.net == "resnet50": | |||
| from src.resnet import resnet50 as resnet | |||
| @@ -31,6 +31,7 @@ from mindspore.train.quant.quant_utils import load_nonquant_param_into_quant_net | |||
| from mindspore.communication.management import init | |||
| import mindspore.nn as nn | |||
| import mindspore.common.initializer as weight_init | |||
| from mindspore.common import set_seed | |||
| #from models.resnet_quant import resnet50_quant #auto construct quantative network of resnet50 | |||
| from models.resnet_quant_manual import resnet50_quant #manually construct quantative network of resnet50 | |||
| @@ -39,6 +40,8 @@ from src.lr_generator import get_lr | |||
| from src.config import config_quant | |||
| from src.crossentropy import CrossEntropy | |||
| set_seed(1) | |||
| parser = argparse.ArgumentParser(description='Image classification') | |||
| parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute') | |||
| parser.add_argument('--device_num', type=int, default=1, help='Device num.') | |||
| @@ -14,11 +14,9 @@ | |||
| # ============================================================================ | |||
| """train resnet.""" | |||
| import os | |||
| import random | |||
| import argparse | |||
| import numpy as np | |||
| from mindspore import context | |||
| from mindspore import dataset as de | |||
| from mindspore.common import set_seed | |||
| from mindspore.train.model import Model | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| from src.crossentropy import CrossEntropy | |||
| @@ -32,9 +30,7 @@ parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path | |||
| parser.add_argument('--device_target', type=str, default='Ascend', help='Device target') | |||
| args_opt = parser.parse_args() | |||
| random.seed(1) | |||
| np.random.seed(1) | |||
| de.config.set_seed(1) | |||
| set_seed(1) | |||
| if __name__ == '__main__': | |||
| target = args_opt.device_target | |||
| @@ -14,13 +14,12 @@ | |||
| # ============================================================================ | |||
| """train resnet.""" | |||
| import os | |||
| import random | |||
| import argparse | |||
| import numpy as np | |||
| from mindspore import context | |||
| from mindspore import Tensor | |||
| from mindspore import dataset as de | |||
| from mindspore.common import set_seed | |||
| from mindspore.parallel._auto_parallel_context import auto_parallel_context | |||
| from mindspore.context import ParallelMode | |||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor, LossMonitor | |||
| @@ -46,9 +45,7 @@ else: | |||
| from src.thor import THOR_GPU as THOR | |||
| from src.config import config_gpu as config | |||
| random.seed(1) | |||
| np.random.seed(1) | |||
| de.config.set_seed(1) | |||
| set_seed(1) | |||
| def get_model_lr(global_step, lr_init, decay, total_epochs, steps_per_epoch, decay_epochs=100): | |||
| @@ -151,7 +151,6 @@ class KaimingUniform(KaimingInit): | |||
| def _initialize(self, arr): | |||
| fan = _select_fan(arr, self.mode) | |||
| bound = math.sqrt(3.0) * self.gain / math.sqrt(fan) | |||
| np.random.seed(0) | |||
| data = np.random.uniform(-bound, bound, arr.shape) | |||
| _assignment(arr, data) | |||
| @@ -179,7 +178,6 @@ class KaimingNormal(KaimingInit): | |||
| def _initialize(self, arr): | |||
| fan = _select_fan(arr, self.mode) | |||
| std = self.gain / math.sqrt(fan) | |||
| np.random.seed(0) | |||
| data = np.random.normal(0, std, arr.shape) | |||
| _assignment(arr, data) | |||
| @@ -195,7 +193,6 @@ def default_recurisive_init(custom_cell): | |||
| if cell.bias is not None: | |||
| fan_in, _ = _calculate_in_and_out(cell.weight) | |||
| bound = 1 / math.sqrt(fan_in) | |||
| np.random.seed(0) | |||
| cell.bias.default_input = init.initializer(init.Uniform(bound), | |||
| cell.bias.shape, | |||
| cell.bias.dtype) | |||
| @@ -206,7 +203,6 @@ def default_recurisive_init(custom_cell): | |||
| if cell.bias is not None: | |||
| fan_in, _ = _calculate_in_and_out(cell.weight) | |||
| bound = 1 / math.sqrt(fan_in) | |||
| np.random.seed(0) | |||
| cell.bias.default_input = init.initializer(init.Uniform(bound), | |||
| cell.bias.shape, | |||
| cell.bias.dtype) | |||
| @@ -28,6 +28,7 @@ from mindspore.train.callback import CheckpointConfig, Callback | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| from mindspore.train.model import Model | |||
| from mindspore.train.loss_scale_manager import DynamicLossScaleManager, FixedLossScaleManager | |||
| from mindspore.common import set_seed | |||
| from src.dataset import classification_dataset | |||
| from src.crossentropy import CrossEntropy | |||
| @@ -38,6 +39,7 @@ from src.utils.optimizers__init__ import get_param_groups | |||
| from src.image_classification import get_network | |||
| from src.config import config | |||
| set_seed(1) | |||
| class BuildTrainNetwork(nn.Cell): | |||
| """build training network""" | |||
| @@ -16,14 +16,11 @@ | |||
| import argparse | |||
| import ast | |||
| import os | |||
| import random | |||
| import numpy as np | |||
| from network import ShuffleNetV2 | |||
| import mindspore.nn as nn | |||
| from mindspore import context | |||
| from mindspore import dataset as de | |||
| from mindspore.context import ParallelMode | |||
| from mindspore import Tensor | |||
| from mindspore.communication.management import init, get_rank, get_group_size | |||
| @@ -31,14 +28,13 @@ from mindspore.nn.optim.momentum import Momentum | |||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor | |||
| from mindspore.train.model import Model | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| from mindspore.common import set_seed | |||
| from src.config import config_gpu as cfg | |||
| from src.dataset import create_dataset | |||
| from src.lr_generator import get_lr_basic | |||
| random.seed(cfg.random_seed) | |||
| np.random.seed(cfg.random_seed) | |||
| de.config.set_seed(cfg.random_seed) | |||
| set_seed(cfg.random_seed) | |||
| if __name__ == '__main__': | |||
| @@ -14,7 +14,6 @@ | |||
| # ============================================================================ | |||
| """Parameters utils""" | |||
| import numpy as np | |||
| from mindspore.common.initializer import initializer, TruncatedNormal | |||
| def init_net_param(network, initialize_mode='TruncatedNormal'): | |||
| @@ -22,7 +21,6 @@ def init_net_param(network, initialize_mode='TruncatedNormal'): | |||
| params = network.trainable_params() | |||
| for p in params: | |||
| if 'beta' not in p.name and 'gamma' not in p.name and 'bias' not in p.name: | |||
| np.random.seed(seed=1) | |||
| if initialize_mode == 'TruncatedNormal': | |||
| p.set_parameter_data(initializer(TruncatedNormal(), p.data.shape, p.data.dtype)) | |||
| else: | |||
| @@ -25,12 +25,14 @@ from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, LossMoni | |||
| from mindspore.train import Model | |||
| from mindspore.context import ParallelMode | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| from mindspore.common import set_seed | |||
| from src.ssd import SSD300, SSDWithLossCell, TrainingWrapper, ssd_mobilenet_v2 | |||
| from src.config import config | |||
| from src.dataset import create_ssd_dataset, data_to_mindrecord_byte_image, voc_data_to_mindrecord | |||
| from src.lr_schedule import get_lr | |||
| from src.init_params import init_net_param, filter_checkpoint_parameter | |||
| set_seed(1) | |||
| def main(): | |||
| parser = argparse.ArgumentParser(description="SSD training") | |||
| @@ -151,7 +151,6 @@ class KaimingUniform(KaimingInit): | |||
| def _initialize(self, arr): | |||
| fan = _select_fan(arr, self.mode) | |||
| bound = math.sqrt(3.0) * self.gain / math.sqrt(fan) | |||
| np.random.seed(0) | |||
| data = np.random.uniform(-bound, bound, arr.shape) | |||
| _assignment(arr, data) | |||
| @@ -179,7 +178,6 @@ class KaimingNormal(KaimingInit): | |||
| def _initialize(self, arr): | |||
| fan = _select_fan(arr, self.mode) | |||
| std = self.gain / math.sqrt(fan) | |||
| np.random.seed(0) | |||
| data = np.random.normal(0, std, arr.shape) | |||
| _assignment(arr, data) | |||
| @@ -195,7 +193,6 @@ def default_recurisive_init(custom_cell): | |||
| if cell.bias is not None: | |||
| fan_in, _ = _calculate_in_and_out(cell.weight) | |||
| bound = 1 / math.sqrt(fan_in) | |||
| np.random.seed(0) | |||
| cell.bias.default_input = init.initializer(init.Uniform(bound), | |||
| cell.bias.shape, | |||
| cell.bias.dtype) | |||
| @@ -206,7 +203,6 @@ def default_recurisive_init(custom_cell): | |||
| if cell.bias is not None: | |||
| fan_in, _ = _calculate_in_and_out(cell.weight) | |||
| bound = 1 / math.sqrt(fan_in) | |||
| np.random.seed(0) | |||
| cell.bias.default_input = init.initializer(init.Uniform(bound), | |||
| cell.bias.shape, | |||
| cell.bias.dtype) | |||
| @@ -19,9 +19,6 @@ python train.py --data_path=$DATA_HOME --device_id=$DEVICE_ID | |||
| import argparse | |||
| import datetime | |||
| import os | |||
| import random | |||
| import numpy as np | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| @@ -33,6 +30,7 @@ from mindspore.train.model import Model | |||
| from mindspore.context import ParallelMode | |||
| from mindspore.train.serialization import load_param_into_net, load_checkpoint | |||
| from mindspore.train.loss_scale_manager import FixedLossScaleManager | |||
| from mindspore.common import set_seed | |||
| from src.dataset import vgg_create_dataset | |||
| from src.dataset import classification_dataset | |||
| @@ -45,8 +43,7 @@ from src.utils.util import get_param_groups | |||
| from src.vgg import vgg16 | |||
| random.seed(1) | |||
| np.random.seed(1) | |||
| set_seed(1) | |||
| def parse_args(cloud_args=None): | |||
| @@ -15,11 +15,9 @@ | |||
| """Warpctc evaluation""" | |||
| import os | |||
| import math as m | |||
| import random | |||
| import argparse | |||
| import numpy as np | |||
| from mindspore import context | |||
| from mindspore import dataset as de | |||
| from mindspore.common import set_seed | |||
| from mindspore.train.model import Model | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| @@ -29,9 +27,7 @@ from src.dataset import create_dataset | |||
| from src.warpctc import StackedRNN, StackedRNNForGPU | |||
| from src.metric import WarpCTCAccuracy | |||
| random.seed(1) | |||
| np.random.seed(1) | |||
| de.config.set_seed(1) | |||
| set_seed(1) | |||
| parser = argparse.ArgumentParser(description="Warpctc training") | |||
| parser.add_argument("--dataset_path", type=str, default=None, help="Dataset, default is None.") | |||
| @@ -15,12 +15,10 @@ | |||
| """Warpctc training""" | |||
| import os | |||
| import math as m | |||
| import random | |||
| import argparse | |||
| import numpy as np | |||
| import mindspore.nn as nn | |||
| from mindspore import context | |||
| from mindspore import dataset as de | |||
| from mindspore.common import set_seed | |||
| from mindspore.train.model import Model | |||
| from mindspore.context import ParallelMode | |||
| from mindspore.nn.wrap import WithLossCell | |||
| @@ -34,9 +32,7 @@ from src.warpctc import StackedRNN, StackedRNNForGPU | |||
| from src.warpctc_for_train import TrainOneStepCellWithGradClip | |||
| from src.lr_schedule import get_lr | |||
| random.seed(1) | |||
| np.random.seed(1) | |||
| de.config.set_seed(1) | |||
| set_seed(1) | |||
| parser = argparse.ArgumentParser(description="Warpctc training") | |||
| parser.add_argument("--run_distribute", action='store_true', help="Run distribute, default is false.") | |||
| @@ -21,9 +21,6 @@ from mindspore.common.initializer import Initializer as MeInitializer | |||
| import mindspore.nn as nn | |||
| np.random.seed(5) | |||
| def calculate_gain(nonlinearity, param=None): | |||
| r"""Return the recommended gain value for the given nonlinearity function. | |||
| The values are as follows: | |||
| @@ -30,6 +30,7 @@ import mindspore as ms | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| from mindspore import amp | |||
| from mindspore.train.loss_scale_manager import FixedLossScaleManager | |||
| from mindspore.common import set_seed | |||
| from src.yolo import YOLOV3DarkNet53, YoloWithLossCell, TrainingWrapper | |||
| from src.logger import get_logger | |||
| @@ -41,6 +42,7 @@ from src.initializer import default_recurisive_init | |||
| from src.config import ConfigYOLOV3DarkNet53 | |||
| from src.util import keep_loss_fp32 | |||
| set_seed(1) | |||
| class BuildTrainNetwork(nn.Cell): | |||
| def __init__(self, network, criterion): | |||
| @@ -21,9 +21,6 @@ import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| np.random.seed(5) | |||
| def calculate_gain(nonlinearity, param=None): | |||
| r"""Return the recommended gain value for the given nonlinearity function. | |||
| The values are as follows: | |||
| @@ -29,6 +29,7 @@ from mindspore.train.callback import _InternalCallbackParam, CheckpointConfig | |||
| import mindspore as ms | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| from mindspore.train.quant import quant | |||
| from mindspore.common import set_seed | |||
| from src.yolo import YOLOV3DarkNet53, YoloWithLossCell, TrainingWrapper | |||
| from src.logger import get_logger | |||
| @@ -41,6 +42,7 @@ from src.config import ConfigYOLOV3DarkNet53 | |||
| from src.transforms import batch_preprocess_true_box, batch_preprocess_true_box_single | |||
| from src.util import ShapeRecord | |||
| set_seed(1) | |||
| devid = int(os.getenv('DEVICE_ID')) | |||
| context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=True, | |||
| @@ -34,11 +34,13 @@ from mindspore.train import Model | |||
| from mindspore.context import ParallelMode | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| from mindspore.common.initializer import initializer | |||
| from mindspore.common import set_seed | |||
| from src.yolov3 import yolov3_resnet18, YoloWithLossCell, TrainingWrapper | |||
| from src.dataset import create_yolo_dataset, data_to_mindrecord_byte_image | |||
| from src.config import ConfigYOLOV3ResNet18 | |||
| set_seed(1) | |||
| def get_lr(learning_rate, start_step, global_step, decay_step, decay_rate, steps=False): | |||
| """Set learning rate.""" | |||
| @@ -54,7 +56,7 @@ def get_lr(learning_rate, start_step, global_step, decay_step, decay_rate, steps | |||
| def init_net_param(network, init_value='ones'): | |||
| """Init:wq the parameters in network.""" | |||
| """Init the parameters in network.""" | |||
| params = network.trainable_params() | |||
| for p in params: | |||
| if isinstance(p.data, Tensor) and 'beta' not in p.name and 'gamma' not in p.name and 'bias' not in p.name: | |||
| @@ -19,12 +19,14 @@ import os | |||
| import numpy as np | |||
| import mindspore.context as context | |||
| from mindspore.train.serialization import save_checkpoint, load_checkpoint | |||
| from mindspore.common import set_seed | |||
| from src.config import GatConfig | |||
| from src.dataset import load_and_process | |||
| from src.gat import GAT | |||
| from src.utils import LossAccuracyWrapper, TrainGAT | |||
| set_seed(1) | |||
| def train(): | |||
| """Train GAT model.""" | |||
| @@ -26,6 +26,7 @@ from matplotlib import pyplot as plt | |||
| from matplotlib import animation | |||
| from sklearn import manifold | |||
| from mindspore import context | |||
| from mindspore.common import set_seed | |||
| from src.gcn import GCN | |||
| from src.metrics import LossAccuracyWrapper, TrainNetWrapper | |||
| @@ -55,7 +56,7 @@ def train(): | |||
| parser.add_argument('--save_TSNE', type=ast.literal_eval, default=False, help='Whether to save t-SNE graph') | |||
| args_opt = parser.parse_args() | |||
| np.random.seed(args_opt.seed) | |||
| set_seed(args_opt.seed) | |||
| context.set_context(mode=context.GRAPH_MODE, | |||
| device_target="Ascend", save_graphs=False) | |||
| config = ConfigGCN() | |||
| @@ -19,7 +19,6 @@ python run_pretrain.py | |||
| import os | |||
| import argparse | |||
| import numpy | |||
| import mindspore.communication.management as D | |||
| import mindspore.common.dtype as mstype | |||
| from mindspore import context | |||
| @@ -30,6 +29,7 @@ from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMoni | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| from mindspore.nn.optim import Lamb, Momentum, AdamWeightDecay | |||
| from mindspore import log as logger | |||
| from mindspore.common import set_seed | |||
| from src import BertNetworkWithLoss, BertTrainOneStepCell, BertTrainOneStepWithLossScaleCell, \ | |||
| BertTrainAccumulateStepsWithLossScaleCell | |||
| from src.dataset import create_bert_dataset | |||
| @@ -196,5 +196,5 @@ def run_pretrain(): | |||
| if __name__ == '__main__': | |||
| numpy.random.seed(0) | |||
| set_seed(0) | |||
| run_pretrain() | |||
| @@ -19,7 +19,6 @@ python run_pretrain.py | |||
| import argparse | |||
| import os | |||
| import numpy | |||
| from src import BertNetworkWithLoss, BertTrainOneStepCell, BertTrainOneStepWithLossScaleCell | |||
| from src.bert_net_config import bert_net_cfg | |||
| from src.config import cfg | |||
| @@ -36,6 +35,7 @@ from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell | |||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor | |||
| from mindspore.context import ParallelMode | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| from mindspore.common import set_seed | |||
| _current_dir = os.path.dirname(os.path.realpath(__file__)) | |||
| @@ -197,5 +197,5 @@ def run_pretrain(): | |||
| if __name__ == '__main__': | |||
| numpy.random.seed(0) | |||
| set_seed(0) | |||
| run_pretrain() | |||
| @@ -30,6 +30,7 @@ from mindspore import context, Parameter | |||
| from mindspore.context import ParallelMode | |||
| from mindspore.communication import management as MultiAscend | |||
| from mindspore.train.serialization import load_checkpoint | |||
| from mindspore.common import set_seed | |||
| from config import TransformerConfig | |||
| from src.dataset import load_dataset | |||
| @@ -337,7 +338,7 @@ if __name__ == '__main__': | |||
| _check_args(args.config) | |||
| _config = get_config(args.config) | |||
| np.random.seed(_config.random_seed) | |||
| set_seed(_config.random_seed) | |||
| context.set_context(save_graphs=_config.save_graphs) | |||
| if _rank_size is not None and int(_rank_size) > 1: | |||
| @@ -18,7 +18,6 @@ | |||
| import os | |||
| import argparse | |||
| import datetime | |||
| import numpy | |||
| import mindspore.communication.management as D | |||
| import mindspore.common.dtype as mstype | |||
| from mindspore import context | |||
| @@ -28,6 +27,7 @@ from mindspore.context import ParallelMode | |||
| from mindspore.nn.optim import AdamWeightDecay | |||
| from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell | |||
| from mindspore import log as logger | |||
| from mindspore.common import set_seed | |||
| from src.dataset import create_tinybert_dataset, DataType | |||
| from src.utils import LossCallBack, ModelSaveCkpt, BertLearningRate | |||
| from src.gd_config import common_cfg, bert_teacher_net_cfg, bert_student_net_cfg | |||
| @@ -154,5 +154,5 @@ def run_general_distill(): | |||
| sink_size=args_opt.data_sink_steps) | |||
| if __name__ == '__main__': | |||
| numpy.random.seed(0) | |||
| set_seed(0) | |||
| run_general_distill() | |||
| @@ -16,8 +16,6 @@ | |||
| import time | |||
| import argparse | |||
| import random | |||
| import numpy as np | |||
| import mindspore.common.dtype as mstype | |||
| from mindspore.common.tensor import Tensor | |||
| @@ -27,10 +25,10 @@ from mindspore.train.loss_scale_manager import DynamicLossScaleManager | |||
| from mindspore.train.callback import CheckpointConfig, ModelCheckpoint | |||
| from mindspore.train.callback import Callback, TimeMonitor | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| import mindspore.dataset.engine as de | |||
| import mindspore.communication.management as D | |||
| from mindspore.context import ParallelMode | |||
| from mindspore import context | |||
| from mindspore.common import set_seed | |||
| from src.transformer_for_train import TransformerTrainOneStepCell, TransformerNetworkWithLoss, \ | |||
| TransformerTrainOneStepWithLossScaleCell | |||
| @@ -38,10 +36,7 @@ from src.config import cfg, transformer_net_cfg | |||
| from src.dataset import create_transformer_dataset | |||
| from src.lr_schedule import create_dynamic_lr | |||
| random_seed = 1 | |||
| random.seed(random_seed) | |||
| np.random.seed(random_seed) | |||
| de.config.set_seed(random_seed) | |||
| set_seed(1) | |||
| def get_ms_timestamp(): | |||
| t = time.time() | |||
| @@ -16,15 +16,13 @@ | |||
| import os | |||
| import sys | |||
| import argparse | |||
| import random | |||
| import numpy as np | |||
| from mindspore import context | |||
| from mindspore.context import ParallelMode | |||
| from mindspore.communication.management import init, get_rank, get_group_size | |||
| from mindspore.train.model import Model | |||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor | |||
| import mindspore.dataset.engine as de | |||
| from mindspore.common import set_seed | |||
| from src.deepfm import ModelBuilder, AUCMetric | |||
| from src.config import DataConfig, ModelConfig, TrainConfig | |||
| @@ -46,9 +44,7 @@ args_opt, _ = parser.parse_known_args() | |||
| args_opt.do_eval = args_opt.do_eval == 'True' | |||
| rank_size = int(os.environ.get("RANK_SIZE", 1)) | |||
| random.seed(1) | |||
| np.random.seed(1) | |||
| de.config.set_seed(1) | |||
| set_seed(1) | |||
| if __name__ == '__main__': | |||
| data_config = DataConfig() | |||
| @@ -17,11 +17,11 @@ | |||
| import os | |||
| import sys | |||
| import numpy as np | |||
| from mindspore import Model, context | |||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor | |||
| from mindspore.context import ParallelMode | |||
| from mindspore.communication.management import get_rank, get_group_size, init | |||
| from mindspore.common import set_seed | |||
| from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel | |||
| from src.callbacks import LossCallBack, EvalCallBack | |||
| @@ -69,7 +69,7 @@ def train_and_eval(config): | |||
| """ | |||
| test_train_eval | |||
| """ | |||
| np.random.seed(1000) | |||
| set_seed(1000) | |||
| data_path = config.data_path | |||
| batch_size = config.batch_size | |||
| epochs = config.epochs | |||
| @@ -17,11 +17,11 @@ | |||
| import os | |||
| import sys | |||
| import numpy as np | |||
| from mindspore import Model, context | |||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor | |||
| from mindspore.context import ParallelMode | |||
| from mindspore.communication.management import get_rank, get_group_size, init | |||
| from mindspore.common import set_seed | |||
| from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel | |||
| from src.callbacks import LossCallBack, EvalCallBack | |||
| @@ -70,7 +70,7 @@ def train_and_eval(config): | |||
| """ | |||
| test_train_eval | |||
| """ | |||
| np.random.seed(1000) | |||
| set_seed(1000) | |||
| data_path = config.data_path | |||
| batch_size = config.batch_size | |||
| epochs = config.epochs | |||
| @@ -16,12 +16,12 @@ | |||
| import os | |||
| import sys | |||
| import numpy as np | |||
| from mindspore import Model, context | |||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig | |||
| from mindspore.train.callback import TimeMonitor | |||
| from mindspore.context import ParallelMode | |||
| from mindspore.communication.management import get_rank, get_group_size, init | |||
| from mindspore.common import set_seed | |||
| from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel | |||
| from src.callbacks import LossCallBack, EvalCallBack | |||
| @@ -69,7 +69,7 @@ def train_and_eval(config): | |||
| """ | |||
| train_and_eval | |||
| """ | |||
| np.random.seed(1000) | |||
| set_seed(1000) | |||
| data_path = config.data_path | |||
| epochs = config.epochs | |||
| print("epochs is {}".format(epochs)) | |||