|
|
|
@@ -23,7 +23,7 @@ import mindspore.dataset.transforms.c_transforms as C2 |
|
|
|
from mindspore.communication.management import init, get_rank, get_group_size |
|
|
|
|
|
|
|
|
|
|
|
def create_dataset1(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend"): |
|
|
|
def create_dataset1(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend", distribute=False): |
|
|
|
""" |
|
|
|
create a train or evaluate cifar10 dataset for resnet50 |
|
|
|
Args: |
|
|
|
@@ -32,6 +32,7 @@ def create_dataset1(dataset_path, do_train, repeat_num=1, batch_size=32, target= |
|
|
|
repeat_num(int): the repeat times of dataset. Default: 1 |
|
|
|
batch_size(int): the batch size of dataset. Default: 32 |
|
|
|
target(str): the device target. Default: Ascend |
|
|
|
distribute(bool): data for distribute or not. Default: False |
|
|
|
|
|
|
|
Returns: |
|
|
|
dataset |
|
|
|
@@ -39,10 +40,12 @@ def create_dataset1(dataset_path, do_train, repeat_num=1, batch_size=32, target= |
|
|
|
if target == "Ascend": |
|
|
|
device_num, rank_id = _get_rank_info() |
|
|
|
else: |
|
|
|
init() |
|
|
|
rank_id = get_rank() |
|
|
|
device_num = get_group_size() |
|
|
|
|
|
|
|
if distribute: |
|
|
|
init() |
|
|
|
rank_id = get_rank() |
|
|
|
device_num = get_group_size() |
|
|
|
else: |
|
|
|
device_num = 1 |
|
|
|
if device_num == 1: |
|
|
|
ds = de.Cifar10Dataset(dataset_path, num_parallel_workers=8, shuffle=True) |
|
|
|
else: |
|
|
|
@@ -77,7 +80,7 @@ def create_dataset1(dataset_path, do_train, repeat_num=1, batch_size=32, target= |
|
|
|
return ds |
|
|
|
|
|
|
|
|
|
|
|
def create_dataset2(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend"): |
|
|
|
def create_dataset2(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend", distribute=False): |
|
|
|
""" |
|
|
|
create a train or eval imagenet2012 dataset for resnet50 |
|
|
|
|
|
|
|
@@ -87,6 +90,7 @@ def create_dataset2(dataset_path, do_train, repeat_num=1, batch_size=32, target= |
|
|
|
repeat_num(int): the repeat times of dataset. Default: 1 |
|
|
|
batch_size(int): the batch size of dataset. Default: 32 |
|
|
|
target(str): the device target. Default: Ascend |
|
|
|
distribute(bool): data for distribute or not. Default: False |
|
|
|
|
|
|
|
Returns: |
|
|
|
dataset |
|
|
|
@@ -94,9 +98,12 @@ def create_dataset2(dataset_path, do_train, repeat_num=1, batch_size=32, target= |
|
|
|
if target == "Ascend": |
|
|
|
device_num, rank_id = _get_rank_info() |
|
|
|
else: |
|
|
|
init() |
|
|
|
rank_id = get_rank() |
|
|
|
device_num = get_group_size() |
|
|
|
if distribute: |
|
|
|
init() |
|
|
|
rank_id = get_rank() |
|
|
|
device_num = get_group_size() |
|
|
|
else: |
|
|
|
device_num = 1 |
|
|
|
|
|
|
|
if device_num == 1: |
|
|
|
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True) |
|
|
|
@@ -139,7 +146,7 @@ def create_dataset2(dataset_path, do_train, repeat_num=1, batch_size=32, target= |
|
|
|
return ds |
|
|
|
|
|
|
|
|
|
|
|
def create_dataset3(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend"): |
|
|
|
def create_dataset3(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend", distribute=False): |
|
|
|
""" |
|
|
|
create a train or eval imagenet2012 dataset for resnet101 |
|
|
|
Args: |
|
|
|
@@ -147,12 +154,21 @@ def create_dataset3(dataset_path, do_train, repeat_num=1, batch_size=32, target= |
|
|
|
do_train(bool): whether dataset is used for train or eval. |
|
|
|
repeat_num(int): the repeat times of dataset. Default: 1 |
|
|
|
batch_size(int): the batch size of dataset. Default: 32 |
|
|
|
target(str): the device target. Default: Ascend |
|
|
|
distribute(bool): data for distribute or not. Default: False |
|
|
|
|
|
|
|
Returns: |
|
|
|
dataset |
|
|
|
""" |
|
|
|
device_num, rank_id = _get_rank_info() |
|
|
|
|
|
|
|
if target == "Ascend": |
|
|
|
device_num, rank_id = _get_rank_info() |
|
|
|
else: |
|
|
|
if distribute: |
|
|
|
init() |
|
|
|
rank_id = get_rank() |
|
|
|
device_num = get_group_size() |
|
|
|
else: |
|
|
|
device_num = 1 |
|
|
|
if device_num == 1: |
|
|
|
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True) |
|
|
|
else: |
|
|
|
@@ -192,7 +208,7 @@ def create_dataset3(dataset_path, do_train, repeat_num=1, batch_size=32, target= |
|
|
|
return ds |
|
|
|
|
|
|
|
|
|
|
|
def create_dataset4(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend"): |
|
|
|
def create_dataset4(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend", distribute=False): |
|
|
|
""" |
|
|
|
create a train or eval imagenet2012 dataset for se-resnet50 |
|
|
|
|
|
|
|
@@ -202,12 +218,20 @@ def create_dataset4(dataset_path, do_train, repeat_num=1, batch_size=32, target= |
|
|
|
repeat_num(int): the repeat times of dataset. Default: 1 |
|
|
|
batch_size(int): the batch size of dataset. Default: 32 |
|
|
|
target(str): the device target. Default: Ascend |
|
|
|
distribute(bool): data for distribute or not. Default: False |
|
|
|
|
|
|
|
Returns: |
|
|
|
dataset |
|
|
|
""" |
|
|
|
if target == "Ascend": |
|
|
|
device_num, rank_id = _get_rank_info() |
|
|
|
else: |
|
|
|
if distribute: |
|
|
|
init() |
|
|
|
rank_id = get_rank() |
|
|
|
device_num = get_group_size() |
|
|
|
else: |
|
|
|
device_num = 1 |
|
|
|
if device_num == 1: |
|
|
|
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=12, shuffle=True) |
|
|
|
else: |
|
|
|
|