You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 12 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
5 years ago
5 years ago
4 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242
  1. # Copyright 2020-2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train resnet."""
  16. import os
  17. import argparse
  18. import ast
  19. from mindspore import context
  20. from mindspore import Tensor
  21. from mindspore.nn.optim import Momentum, THOR
  22. from mindspore.train.model import Model
  23. from mindspore.context import ParallelMode
  24. from mindspore.train.train_thor import ConvertModelUtils
  25. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
  26. from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
  27. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  28. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  29. from mindspore.communication.management import init, get_rank, get_group_size
  30. from mindspore.common import set_seed
  31. from mindspore.parallel import set_algo_parameters
  32. import mindspore.nn as nn
  33. import mindspore.common.initializer as weight_init
  34. from src.lr_generator import get_lr, warmup_cosine_annealing_lr
  35. from src.CrossEntropySmooth import CrossEntropySmooth
  36. from src.config import cfg
  37. parser = argparse.ArgumentParser(description='Image classification')
  38. parser.add_argument('--net', type=str, default=None, help='Resnet Model, resnet18, resnet50 or resnet101')
  39. parser.add_argument('--dataset', type=str, default=None, help='Dataset, either cifar10 or imagenet2012')
  40. parser.add_argument('--run_distribute', type=ast.literal_eval, default=False, help='Run distribute')
  41. parser.add_argument('--device_num', type=int, default=1, help='Device num.')
  42. parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
  43. parser.add_argument('--device_target', type=str, default='Ascend', choices=("Ascend", "GPU", "CPU"),
  44. help="Device target, support Ascend, GPU and CPU.")
  45. parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
  46. parser.add_argument('--parameter_server', type=ast.literal_eval, default=False, help='Run parameter server train')
  47. parser.add_argument("--filter_weight", type=ast.literal_eval, default=False,
  48. help="Filter head weight parameters, default is False.")
  49. args_opt = parser.parse_args()
  50. set_seed(1)
  51. if args_opt.net in ("resnet18", "resnet50"):
  52. if args_opt.net == "resnet18":
  53. from src.resnet import resnet18 as resnet
  54. if args_opt.net == "resnet50":
  55. from src.resnet import resnet50 as resnet
  56. if args_opt.dataset == "cifar10":
  57. from src.config import config1 as config
  58. from src.dataset import create_dataset1 as create_dataset
  59. else:
  60. from src.config import config2 as config
  61. from src.dataset import create_dataset2 as create_dataset
  62. elif args_opt.net == "resnet101":
  63. from src.resnet import resnet101 as resnet
  64. from src.config import config3 as config
  65. from src.dataset import create_dataset3 as create_dataset
  66. else:
  67. from src.resnet import se_resnet50 as resnet
  68. from src.config import config4 as config
  69. from src.dataset import create_dataset4 as create_dataset
  70. if cfg.optimizer == "Thor":
  71. if args_opt.device_target == "Ascend":
  72. from src.config import config_thor_Ascend as config
  73. else:
  74. from src.config import config_thor_gpu as config
  75. def filter_checkpoint_parameter_by_list(origin_dict, param_filter):
  76. """remove useless parameters according to filter_list"""
  77. for key in list(origin_dict.keys()):
  78. for name in param_filter:
  79. if name in key:
  80. print("Delete parameter from checkpoint: ", key)
  81. del origin_dict[key]
  82. break
  83. if __name__ == '__main__':
  84. target = args_opt.device_target
  85. if target == "CPU":
  86. args_opt.run_distribute = False
  87. ckpt_save_dir = config.save_checkpoint_path
  88. # init context
  89. context.set_context(mode=context.GRAPH_MODE, device_target=target, save_graphs=False)
  90. if args_opt.parameter_server:
  91. context.set_ps_context(enable_ps=True)
  92. if args_opt.run_distribute:
  93. if target == "Ascend":
  94. device_id = int(os.getenv('DEVICE_ID'))
  95. context.set_context(device_id=device_id, enable_auto_mixed_precision=True)
  96. context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
  97. gradients_mean=True)
  98. set_algo_parameters(elementwise_op_strategy_follow=True)
  99. if args_opt.net == "resnet50" or args_opt.net == "se-resnet50":
  100. context.set_auto_parallel_context(all_reduce_fusion_config=[85, 160])
  101. elif args_opt.net == "resnet18":
  102. context.set_auto_parallel_context(all_reduce_fusion_config=[40, 61])
  103. else:
  104. context.set_auto_parallel_context(all_reduce_fusion_config=[180, 313])
  105. init()
  106. # GPU target
  107. else:
  108. init()
  109. context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL,
  110. gradients_mean=True)
  111. if args_opt.net == "resnet50":
  112. context.set_auto_parallel_context(all_reduce_fusion_config=[85, 160])
  113. ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str(get_rank()) + "/"
  114. # create dataset
  115. dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, repeat_num=1,
  116. batch_size=config.batch_size, target=target, distribute=args_opt.run_distribute)
  117. step_size = dataset.get_dataset_size()
  118. # define net
  119. net = resnet(class_num=config.class_num)
  120. if args_opt.parameter_server:
  121. net.set_param_ps()
  122. # init weight
  123. if args_opt.pre_trained:
  124. param_dict = load_checkpoint(args_opt.pre_trained)
  125. if args_opt.filter_weight:
  126. filter_list = [x.name for x in net.end_point.get_parameters()]
  127. filter_checkpoint_parameter_by_list(param_dict, filter_list)
  128. load_param_into_net(net, param_dict)
  129. else:
  130. for _, cell in net.cells_and_names():
  131. if isinstance(cell, nn.Conv2d):
  132. cell.weight.set_data(weight_init.initializer(weight_init.XavierUniform(),
  133. cell.weight.shape,
  134. cell.weight.dtype))
  135. if isinstance(cell, nn.Dense):
  136. cell.weight.set_data(weight_init.initializer(weight_init.TruncatedNormal(),
  137. cell.weight.shape,
  138. cell.weight.dtype))
  139. # init lr
  140. if cfg.optimizer == "Thor":
  141. from src.lr_generator import get_thor_lr
  142. lr = get_thor_lr(0, config.lr_init, config.lr_decay, config.lr_end_epoch, step_size, decay_epochs=39)
  143. else:
  144. if args_opt.net in ("resnet18", "resnet50", "se-resnet50"):
  145. lr = get_lr(lr_init=config.lr_init, lr_end=config.lr_end, lr_max=config.lr_max,
  146. warmup_epochs=config.warmup_epochs, total_epochs=config.epoch_size, steps_per_epoch=step_size,
  147. lr_decay_mode=config.lr_decay_mode)
  148. else:
  149. lr = warmup_cosine_annealing_lr(config.lr, step_size, config.warmup_epochs, config.epoch_size,
  150. config.pretrain_epoch_size * step_size)
  151. lr = Tensor(lr)
  152. # define opt
  153. decayed_params = []
  154. no_decayed_params = []
  155. for param in net.trainable_params():
  156. if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
  157. decayed_params.append(param)
  158. else:
  159. no_decayed_params.append(param)
  160. group_params = [{'params': decayed_params, 'weight_decay': config.weight_decay},
  161. {'params': no_decayed_params},
  162. {'order_params': net.trainable_params()}]
  163. opt = Momentum(group_params, lr, config.momentum, loss_scale=config.loss_scale)
  164. # define loss, model
  165. if target == "Ascend":
  166. if args_opt.dataset == "imagenet2012":
  167. if not config.use_label_smooth:
  168. config.label_smooth_factor = 0.0
  169. loss = CrossEntropySmooth(sparse=True, reduction="mean",
  170. smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
  171. else:
  172. loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
  173. loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
  174. model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
  175. amp_level="O2", keep_batchnorm_fp32=False)
  176. else:
  177. # GPU and CPU target
  178. if args_opt.dataset == "imagenet2012":
  179. if not config.use_label_smooth:
  180. config.label_smooth_factor = 0.0
  181. loss = CrossEntropySmooth(sparse=True, reduction="mean",
  182. smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
  183. else:
  184. loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
  185. if (args_opt.net == "resnet101" or args_opt.net == "resnet50") and \
  186. not args_opt.parameter_server and target != "CPU":
  187. opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, config.weight_decay,
  188. config.loss_scale)
  189. loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
  190. # Mixed precision
  191. model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
  192. amp_level="O2", keep_batchnorm_fp32=False)
  193. else:
  194. ## fp32 training
  195. opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, config.weight_decay)
  196. model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
  197. if cfg.optimizer == "Thor" and args_opt.dataset == "imagenet2012":
  198. from src.lr_generator import get_thor_damping
  199. damping = get_thor_damping(0, config.damping_init, config.damping_decay, 70, step_size)
  200. split_indices = [26, 53]
  201. opt = THOR(net, lr, Tensor(damping), config.momentum, config.weight_decay, config.loss_scale,
  202. config.batch_size, split_indices=split_indices)
  203. model = ConvertModelUtils().convert_to_thor_model(model=model, network=net, loss_fn=loss, optimizer=opt,
  204. loss_scale_manager=loss_scale, metrics={'acc'},
  205. amp_level="O2", keep_batchnorm_fp32=False,
  206. frequency=config.frequency)
  207. # define callbacks
  208. time_cb = TimeMonitor(data_size=step_size)
  209. loss_cb = LossMonitor()
  210. cb = [time_cb, loss_cb]
  211. if config.save_checkpoint:
  212. config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
  213. keep_checkpoint_max=config.keep_checkpoint_max)
  214. ckpt_cb = ModelCheckpoint(prefix="resnet", directory=ckpt_save_dir, config=config_ck)
  215. cb += [ckpt_cb]
  216. # train model
  217. if args_opt.net == "se-resnet50":
  218. config.epoch_size = config.train_epoch_size
  219. dataset_sink_mode = (not args_opt.parameter_server) and target != "CPU"
  220. model.train(config.epoch_size - config.pretrain_epoch_size, dataset, callbacks=cb,
  221. sink_size=dataset.get_dataset_size(), dataset_sink_mode=dataset_sink_mode)