You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_ops.py 57 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """ test ops """
  16. import functools
  17. import numpy as np
  18. import mindspore.nn as nn
  19. import mindspore.ops.composite as C
  20. from mindspore import Tensor
  21. from mindspore import ops, Parameter, context
  22. from mindspore.common import dtype as mstype
  23. from mindspore.ops import functional as F
  24. from mindspore.ops import operations as P
  25. from mindspore.ops.operations import _grad_ops as G
  26. from ..ut_filter import non_graph_engine
  27. from ....mindspore_test_framework.mindspore_test import mindspore_test
  28. from ....mindspore_test_framework.pipeline.forward.compile_forward \
  29. import (pipeline_for_compile_forward_ge_graph_for_case_by_case_config,
  30. pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
  31. from ....mindspore_test_framework.pipeline.gradient.compile_gradient \
  32. import pipeline_for_compile_grad_ge_graph_for_case_by_case_config
  33. class InputBackward(nn.Cell):
  34. def __init__(self, network):
  35. super(InputBackward, self).__init__()
  36. self.network = network
  37. self.network.set_train()
  38. self.grad = C.grad_all_with_sens
  39. def construct(self, x1, x2, x3, sens):
  40. return self.grad(self.network)(x1, x2, x3, sens)
  41. class NetForTupleInput(nn.Cell):
  42. def __init__(self, op):
  43. super(NetForTupleInput, self).__init__()
  44. self.op = op
  45. def construct(self, x1, x2):
  46. return self.op((x1, x2))
  47. class StridedSlicessdNet(nn.Cell):
  48. def __init__(self):
  49. super(StridedSlicessdNet, self).__init__()
  50. self.rank = P.Rank()
  51. def construct(self, x1):
  52. return P.StridedSlice(1, 1, 0, self.rank(x1), 0)(x1, (0, 0), (0, 0), (1, 1))
  53. class NetForConcat(nn.Cell):
  54. def __init__(self):
  55. super(NetForConcat, self).__init__()
  56. self.concat = P.Concat()
  57. def construct(self, x1):
  58. return self.concat((x1, x1))
  59. class NetForConcat1(nn.Cell):
  60. def __init__(self):
  61. super(NetForConcat1, self).__init__()
  62. self.concat = P.Concat()
  63. def construct(self, x1, x2):
  64. return self.concat((x1, x2))
  65. class NetForPackInput(nn.Cell):
  66. def __init__(self, op):
  67. super(NetForPackInput, self).__init__()
  68. self.op = op
  69. self.mul = P.Mul()
  70. def construct(self, *args):
  71. t = ()
  72. for element in args:
  73. t = t + (self.mul(element, element),)
  74. return self.op(t)
  75. class NetForUnpackInput(nn.Cell):
  76. def __init__(self, op):
  77. super(NetForUnpackInput, self).__init__()
  78. self.op = op
  79. self.mul = P.Mul()
  80. def construct(self, x1):
  81. return self.op((self.mul(x1, x1)))
  82. class NetForFlatten(nn.Cell):
  83. def __init__(self):
  84. super(NetForFlatten, self).__init__()
  85. self.flatten = P.Flatten()
  86. def construct(self, x, y):
  87. return self.flatten(x) + y
  88. class NetForFlatten0D(nn.Cell):
  89. def __init__(self):
  90. super(NetForFlatten0D, self).__init__()
  91. self.flatten = P.Flatten()
  92. def construct(self, x):
  93. return self.flatten(x)
  94. class NetForFlattenComposed(nn.Cell):
  95. # make flatten op together with other ops for testing flatten grad
  96. def __init__(self):
  97. super(NetForFlattenComposed, self).__init__()
  98. self.flatten = P.Flatten()
  99. def construct(self, x, y):
  100. return self.flatten(x + x) + y
  101. class ArgmaxNet(nn.Cell):
  102. def __init__(self):
  103. super(ArgmaxNet, self).__init__()
  104. self.argmax = P.Argmax(axis=1)
  105. def construct(self, input_):
  106. return self.argmax(input_)
  107. class ArgminNet(nn.Cell):
  108. def __init__(self):
  109. super(ArgminNet, self).__init__()
  110. self.argmin = P.Argmin(axis=1)
  111. def construct(self, input_):
  112. return self.argmin(input_)
  113. class CumSumNet(nn.Cell):
  114. def __init__(self):
  115. super(CumSumNet, self).__init__()
  116. self.cumsum = P.CumSum()
  117. self.axis = 1
  118. def construct(self, input_):
  119. return self.cumsum(input_, self.axis)
  120. class SummaryNet(nn.Cell):
  121. def __init__(self):
  122. super(SummaryNet, self).__init__()
  123. self.s = P.ScalarSummary()
  124. self.add = P.TensorAdd()
  125. def construct(self, x, y):
  126. self.s("x1", x)
  127. return self.add(x, y)
  128. class HistogramSummaryNet(nn.Cell):
  129. def __init__(self):
  130. super(HistogramSummaryNet, self).__init__()
  131. self.summary = P.HistogramSummary()
  132. self.add = P.TensorAdd()
  133. def construct(self, x, y):
  134. out = self.add(x, y)
  135. string_in = "out"
  136. self.summary(string_in, out)
  137. return out
  138. class ScatterMax(nn.Cell):
  139. """ScatterMax net definition"""
  140. def __init__(self):
  141. super(ScatterMax, self).__init__()
  142. self.scatter_max = P.ScatterMax()
  143. self.ref = Parameter(Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], np.float32)), name="ref")
  144. def construct(self, indices, updates):
  145. out = self.scatter_max(self.ref, indices, updates)
  146. return out
  147. class ScatterAdd(nn.Cell):
  148. """ScatterAdd net definition"""
  149. def __init__(self, ref_shape):
  150. super(ScatterAdd, self).__init__()
  151. self.scatter_add = P.ScatterAdd()
  152. self.ref = Parameter(Tensor(np.ones(ref_shape, np.float32)), name="ref")
  153. def construct(self, indices, updates):
  154. out = self.scatter_add(self.ref, indices, updates)
  155. return out
  156. class ApplyFtrlNet(nn.Cell):
  157. def __init__(self):
  158. super(ApplyFtrlNet, self).__init__()
  159. self.apply_ftrl = P.ApplyFtrl()
  160. self.lr = 0.001
  161. self.l1 = 0.0
  162. self.l2 = 0.0
  163. self.lr_power = -0.5
  164. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  165. self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
  166. self.linear = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="linear")
  167. def construct(self, grad):
  168. out = self.apply_ftrl(self.var, self.accum, self.linear, grad, self.lr, self.l1, self.l2, self.lr_power)
  169. return out
  170. class SparseApplyFtrlNet(nn.Cell):
  171. def __init__(self):
  172. super(SparseApplyFtrlNet, self).__init__()
  173. self.sparse_apply_ftrl = P.SparseApplyFtrl(lr=0.001, l1=0.0, l2=0.0, lr_power=-0.5)
  174. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  175. self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
  176. self.linear = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="linear")
  177. def construct(self, grad, indices):
  178. out = self.sparse_apply_ftrl(self.var, self.accum, self.linear, grad, indices)
  179. return out
  180. class SparseApplyProximalAdagradNet(nn.Cell):
  181. def __init__(self):
  182. super(SparseApplyProximalAdagradNet, self).__init__()
  183. self.sparse_apply_proximal_adagrad = P.SparseApplyProximalAdagrad()
  184. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  185. self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
  186. self.lr = 0.01
  187. self.l1 = 0.0
  188. self.l2 = 0.0
  189. def construct(self, grad, indices):
  190. out = self.sparse_apply_proximal_adagrad(self.var, self.accum, self.lr, self.l1, self.l2, grad, indices)
  191. return out
  192. class ApplyProximalAdagradNet(nn.Cell):
  193. def __init__(self):
  194. super(ApplyProximalAdagradNet, self).__init__()
  195. self.apply_proximal_adagrad = P.ApplyProximalAdagrad()
  196. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  197. self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
  198. self.lr = 0.01
  199. self.l1 = 0.0
  200. self.l2 = 0.0
  201. def construct(self, grad):
  202. out = self.apply_proximal_adagrad(self.var, self.accum, self.lr, self.l1, self.l2, grad)
  203. return out
  204. class ApplyRMSNet(nn.Cell):
  205. def __init__(self):
  206. super(ApplyRMSNet, self).__init__()
  207. self.apply_rms = P.ApplyRMSProp()
  208. self.lr = 0.001
  209. self.rho = 0.0
  210. self.momentum = 0.0
  211. self.epsilon = 1e-10
  212. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  213. self.ms = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="ms")
  214. self.moment = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="moment")
  215. def construct(self, grad):
  216. out = self.apply_rms(self.var, self.ms, self.moment, self.lr, grad, self.rho, self.momentum, self.epsilon)
  217. return out
  218. test_case_math_ops = [
  219. ('BitwiseAnd', {
  220. 'block': P.BitwiseAnd(),
  221. 'desc_inputs': [Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mstype.int16),
  222. Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mstype.int16)],
  223. 'skip': ['backward']}),
  224. ('BitwiseAnd_1', {
  225. 'block': P.BitwiseAnd(),
  226. 'desc_inputs': [Tensor(np.array([[1, 2, 3], [-1, -2, -3]]), mstype.int16),
  227. Tensor(np.array([1, 1, 1]), mstype.int16)],
  228. 'skip': ['backward']}),
  229. ('BitwiseOr', {
  230. 'block': P.BitwiseOr(),
  231. 'desc_inputs': [Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mstype.int16),
  232. Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mstype.int16)],
  233. 'skip': ['backward']}),
  234. ('BitwiseOr_1', {
  235. 'block': P.BitwiseOr(),
  236. 'desc_inputs': [Tensor(np.array([[1, 2, 3], [-1, -2, -3]]), mstype.int16),
  237. Tensor(np.array([1, 1, 1]), mstype.int16)],
  238. 'skip': ['backward']}),
  239. ('BitwiseXor', {
  240. 'block': P.BitwiseXor(),
  241. 'desc_inputs': [Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mstype.int16),
  242. Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mstype.int16)],
  243. 'skip': ['backward']}),
  244. ('BitwiseXor_1', {
  245. 'block': P.BitwiseXor(),
  246. 'desc_inputs': [Tensor(np.array([[1, 2, 3], [-1, -2, -3]]), mstype.int16),
  247. Tensor(np.array([1, 1, 1]), mstype.int16)],
  248. 'skip': ['backward']}),
  249. ('Neg', {
  250. 'block': P.Neg(),
  251. 'desc_inputs': [[1, 3, 4, 4]],
  252. 'desc_bprop': [[1, 3, 4, 4]]}),
  253. ('Sub', {
  254. 'block': P.Sub(),
  255. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  256. 'desc_bprop': [[2, 3, 3, 5]]}),
  257. ('TensorAdd', {
  258. 'block': P.TensorAdd(),
  259. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  260. 'desc_bprop': [[2, 3, 3, 5]]}),
  261. ('Mul0', {
  262. 'block': P.Mul(),
  263. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  264. 'desc_bprop': [[2, 3, 3, 5]]}),
  265. ('Mul1', {
  266. 'block': P.Mul(),
  267. 'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
  268. 'desc_bprop': [[2, 3, 3, 5]]}),
  269. ('Mul2', {
  270. 'block': P.Mul(),
  271. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
  272. 'desc_bprop': [[2, 3, 3, 5]],
  273. 'skip': ['backward']}),
  274. ('Mul3', {
  275. 'block': P.Mul(),
  276. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  277. 'desc_bprop': [[2, 3, 3, 5]],
  278. 'skip': ['backward']}),
  279. ('Mul4', {
  280. 'block': P.Mul(),
  281. 'desc_inputs': [[2, 3, 3, 5], [3, 5]],
  282. 'desc_bprop': [[2, 3, 3, 5]],
  283. 'skip': ['backward']}),
  284. ('Add0', {
  285. 'block': P.TensorAdd(),
  286. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  287. 'desc_bprop': [[2, 3, 3, 5]]}),
  288. ('Add1', {
  289. 'block': P.TensorAdd(),
  290. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  291. 'desc_bprop': [[2, 3, 3, 5]],
  292. 'skip': ['backward']}),
  293. ('Add2', {
  294. 'block': P.TensorAdd(),
  295. 'desc_inputs': [[2, 3, 3, 5], [3, 5]],
  296. 'desc_bprop': [[2, 3, 3, 5]],
  297. 'skip': ['backward']}),
  298. ('Add3', {
  299. 'block': P.TensorAdd(),
  300. 'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
  301. 'desc_bprop': [[2, 3, 3, 5]],
  302. 'skip': ['backward']}),
  303. ('Add4', {
  304. 'block': P.TensorAdd(),
  305. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
  306. 'desc_bprop': [[2, 3, 3, 5]],
  307. 'skip': ['backward']}),
  308. ('Minimum', {
  309. 'block': P.Minimum(),
  310. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  311. 'desc_bprop': [[2, 3, 3, 5]]}),
  312. ('Pow_0', {
  313. 'block': P.Pow(),
  314. 'desc_const': [2.0],
  315. 'desc_inputs': [[2, 3, 3, 5]],
  316. 'desc_bprop': [[2, 3, 3, 5]]}),
  317. ('Pow_1', {
  318. 'block': P.Pow(),
  319. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  320. 'desc_bprop': [[2, 3, 3, 5]]}),
  321. ('Exp', {
  322. 'block': P.Exp(),
  323. 'desc_inputs': [[2, 3]],
  324. 'desc_bprop': [[2, 3]]}),
  325. ('Expm1', {
  326. 'block': P.Expm1(),
  327. 'desc_inputs': [[2, 3]],
  328. 'desc_bprop': [[2, 3]]}),
  329. ('Erf', {
  330. 'block': P.Erf(),
  331. 'desc_inputs': [Tensor(np.array([-2, -1, 0, 1, 2]).astype(np.float16))],
  332. 'desc_bprop': [Tensor(np.array([-2, -1, 0, 1, 2]).astype(np.float16))]}),
  333. ('Floor', {
  334. 'block': P.Floor(),
  335. 'desc_inputs': [[2, 512, 56, 56]],
  336. 'desc_bprop': [[2, 512, 56, 56]],
  337. 'skip': ['backward']}),
  338. ('Ceil', {
  339. 'block': P.Ceil(),
  340. 'desc_inputs': [[2, 512, 56, 56]],
  341. 'desc_bprop': [[2, 512, 56, 56]],
  342. 'skip': ['backward']}),
  343. ('ACos', {
  344. 'block': P.ACos(),
  345. 'desc_inputs': [Tensor(np.array([2., 3.]).astype(np.float32))],
  346. 'desc_bprop': [Tensor(np.array([2., 3.]).astype(np.float32))]}),
  347. ('ACosGrad', {
  348. 'block': G.ACosGrad(),
  349. 'desc_inputs': [[2, 3], [2, 3]],
  350. 'skip': ['backward']}),
  351. ('Acosh', {
  352. 'block': P.Acosh(),
  353. 'desc_inputs': [Tensor(np.array([2., 3.]).astype(np.float32))],
  354. 'desc_bprop': [Tensor(np.array([2., 3.]).astype(np.float32))]}),
  355. ('AcoshGrad', {
  356. 'block': G.AcoshGrad(),
  357. 'desc_inputs': [[2, 3], [2, 3]],
  358. 'skip': ['backward']}),
  359. ('Sin', {
  360. 'block': P.Sin(),
  361. 'desc_inputs': [[2, 3]],
  362. 'desc_bprop': [[2, 3]]}),
  363. ('Asin', {
  364. 'block': P.Asin(),
  365. 'desc_inputs': [[2, 3]],
  366. 'desc_bprop': [[2, 3]]}),
  367. ('Asinh', {
  368. 'block': P.Asinh(),
  369. 'desc_inputs': [[3, 4, 5]],
  370. 'desc_bprop': [[3, 4, 5]]}),
  371. ('Reciprocal', {
  372. 'block': P.Reciprocal(),
  373. 'desc_inputs': [[2, 3, 3, 5]],
  374. 'desc_bprop': [[2, 3, 3, 5]]}),
  375. ('Minimum_0', {
  376. 'block': P.Minimum(),
  377. 'desc_inputs': [[2, 3, 3, 5], [3, 3, 5]],
  378. 'desc_bprop': [[2, 3, 3, 5]]}),
  379. ('Maximum', {
  380. 'block': P.Maximum(),
  381. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  382. 'desc_bprop': [[2, 3, 3, 5]]}),
  383. ('Maximum_0', {
  384. 'block': P.Maximum(),
  385. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  386. 'desc_bprop': [[2, 3, 3, 5]]}),
  387. ('MaximumGrad', {
  388. 'block': G.MaximumGrad(),
  389. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
  390. 'skip': ['backward']}),
  391. ('MinimumGrad', {
  392. 'block': G.MinimumGrad(),
  393. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
  394. 'skip': ['backward']}),
  395. ('StridedSlice', {
  396. 'block': P.StridedSlice(),
  397. 'desc_const': [(0, 1, 2, 1),
  398. (2, 3, 3, 4),
  399. (1, 1, 1, 1)],
  400. 'desc_inputs': [[2, 3, 3, 5]],
  401. 'desc_bprop': [[2, 2, 1, 3]]}),
  402. ('Slice_1', {
  403. 'block': P.Slice(),
  404. 'desc_const': [(0, 1, 2, 1),
  405. (1, 1, 1, 2)],
  406. 'desc_inputs': [[2, 3, 3, 5]],
  407. 'desc_bprop': [[1, 1, 1, 2]]}),
  408. ('StridedSliceGrad', {
  409. 'block': G.StridedSliceGrad(),
  410. 'desc_const': [(64, 1, 1024),
  411. (0, 1, 0),
  412. (64, 2, 1024),
  413. (1, 1, 1)],
  414. 'desc_inputs': [[64, 128, 1024]],
  415. 'skip': ['backward']}),
  416. ('RandomChoiceWithMask', {
  417. 'block': P.RandomChoiceWithMask(256),
  418. 'desc_inputs': [Tensor(np.random.rand(24000, 4).astype(np.bool_))],
  419. 'desc_bprop': [[256, 4], [256, 4]],
  420. 'skip': ['backward']}),
  421. ('LessEqual', {
  422. 'block': P.LessEqual(),
  423. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  424. Tensor(np.random.rand(4).astype(np.float16))],
  425. 'skip': ['backward']}),
  426. ('Less', {
  427. 'block': P.Less(),
  428. 'desc_inputs': [[2, 1, 4, 5], [2, 1, 4, 5]],
  429. 'desc_bprop': [Tensor(np.zeros((2, 1, 4, 5), np.bool_))],
  430. 'skip': ['backward']}),
  431. ('RealDiv_0', {
  432. 'block': P.RealDiv(),
  433. 'desc_const': [Tensor(2048.0), Tensor(0.0)],
  434. 'desc_inputs': [],
  435. 'skip': ['backward']}),
  436. ('RealDiv', {
  437. 'block': P.RealDiv(),
  438. 'desc_inputs': [[4], Tensor(np.ones(4).astype(np.float32))],
  439. 'desc_bprop': [[4]]}),
  440. ('RealDiv_1', {
  441. 'block': P.RealDiv(),
  442. 'desc_inputs': [[512, 1024], [512, 1024]],
  443. 'desc_bprop': [[512, 1024]]}),
  444. ('FloorDiv', {
  445. 'block': P.FloorDiv(),
  446. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  447. Tensor(np.random.rand(4).astype(np.float16))],
  448. 'skip': ['backward']}),
  449. ('FloorMod', {
  450. 'block': P.FloorMod(),
  451. 'desc_inputs': [[3, 4, 5], [2, 3, 4, 5]],
  452. 'desc_bprop': [[2, 3, 4, 5]]}),
  453. ('identity', {
  454. 'block': ops.functional.identity,
  455. 'desc_inputs': [[2, 2]],
  456. 'skip': ['backward']}),
  457. ('MatMul_1', {
  458. 'block': P.MatMul(transpose_a=False, transpose_b=False),
  459. 'desc_inputs': [[1024, 160], [160, 1024]],
  460. 'desc_bprop': [[1024, 1024]]}),
  461. ('MatMul_2', {
  462. 'block': P.MatMul(transpose_a=True, transpose_b=True),
  463. 'desc_inputs': [[160, 1024], [1024, 160]],
  464. 'desc_bprop': [[1024, 1024]]}),
  465. ('Sub', {
  466. 'block': P.Sub(),
  467. 'desc_inputs': [[3], [3]],
  468. 'desc_bprop': [[3]]}),
  469. ('TruncatedNormal', {
  470. 'block': P.TruncatedNormal(),
  471. 'desc_const': [(1, 2, 3)],
  472. 'desc_inputs': [],
  473. 'skip': ['backward'],
  474. 'add_fake_input': True}),
  475. ('Select', {
  476. 'block': P.Select(),
  477. 'desc_inputs': [Tensor(np.array([[True, False, False], [False, True, True]])),
  478. [2, 3], [2, 3]],
  479. 'desc_bprop': [[2, 3]]}),
  480. ('Rank', {
  481. 'block': P.Rank(),
  482. 'desc_inputs': [[2, 3]],
  483. 'skip': ['backward']}),
  484. ('InvertPermutation', {
  485. 'block': P.InvertPermutation(),
  486. 'desc_const': [(0, 3, 1, 2)],
  487. 'desc_inputs': [],
  488. 'skip': ['backward']}),
  489. ('Square', {
  490. 'block': P.Square(),
  491. 'desc_inputs': [[4]],
  492. 'desc_bprop': [[4]]}),
  493. ('Rsqrt', {
  494. 'block': P.Rsqrt(),
  495. 'desc_inputs': [[4]],
  496. 'desc_bprop': [[4]]}),
  497. ('Sqrt', {
  498. 'block': P.Sqrt(),
  499. 'desc_inputs': [[4]],
  500. 'desc_bprop': [[4]]}),
  501. ('RealDiv', {
  502. 'block': P.RealDiv(),
  503. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  504. 'desc_bprop': [[2, 3, 4, 5]]}),
  505. ('Div', {
  506. 'block': P.Div(),
  507. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  508. 'desc_bprop': [[2, 3, 4, 5]]}),
  509. ('Equal', {
  510. 'block': P.Equal(),
  511. 'desc_inputs': [[3, 4, 5], [4, 5]],
  512. 'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
  513. ('NotEqual', {
  514. 'block': P.NotEqual(),
  515. 'desc_inputs': [[4, 1], [2, 3, 4, 5]],
  516. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  517. ('NotEqual_0', {
  518. 'block': P.NotEqual(),
  519. 'desc_inputs': [1, [2, 3, 4, 5]],
  520. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))],
  521. 'skip': ['backward']}),
  522. ('Greater', {
  523. 'block': P.Greater(),
  524. 'desc_inputs': [[2, 3, 4, 1], [4, 5]],
  525. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  526. ('GreaterEqual', {
  527. 'block': P.GreaterEqual(),
  528. 'desc_inputs': [[2, 3, 4, 1], [4, 5]],
  529. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  530. ('LogicalNot', {
  531. 'block': P.LogicalNot(),
  532. 'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_))],
  533. 'desc_bprop': [Tensor(np.ones((3, 4, 5), np.bool_))]}),
  534. ('LogicalAnd', {
  535. 'block': P.LogicalAnd(),
  536. 'desc_inputs': [Tensor(np.zeros((2, 3, 4), np.bool_)), Tensor(np.ones((1), np.bool_))],
  537. 'desc_bprop': [Tensor(np.zeros((2, 3, 4), np.bool_))]}),
  538. ('LogicalOr', {
  539. 'block': P.LogicalOr(),
  540. 'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_)), Tensor(np.ones((3, 1, 1), np.bool_))],
  541. 'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
  542. ('NpuAllocFloatStatus', {
  543. 'block': P.NPUAllocFloatStatus(),
  544. 'desc_inputs': [],
  545. 'add_fack_input': True,
  546. 'fack_input_type': np.float32,
  547. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  548. 'skip': ['backward']}),
  549. ('NpuGetFloatStatus', {
  550. 'block': P.NPUGetFloatStatus(),
  551. 'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
  552. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  553. 'skip': ['backward']}),
  554. ('NpuClearFloatStatus', {
  555. 'block': P.NPUClearFloatStatus(),
  556. 'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
  557. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  558. 'skip': ['backward']}),
  559. ('CheckValid', {
  560. 'block': P.CheckValid(),
  561. 'desc_inputs': [[20000, 4], [3]],
  562. 'desc_bprop': [[20000]],
  563. 'skip': ['backward']}),
  564. ('NMSWithMask', {
  565. 'block': P.NMSWithMask(0.5),
  566. 'desc_inputs': [[128, 5]],
  567. 'desc_bprop': [[128, 5], [128], [128]],
  568. 'skip': ['backward']}),
  569. ('Abs', {
  570. 'block': P.Abs(),
  571. 'desc_inputs': [[4]],
  572. 'desc_bprop': [[4]]}),
  573. ('CumSum', {
  574. 'block': CumSumNet(),
  575. 'desc_inputs': [Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7], [1, 3, 7, 9]]).astype(np.float32))],
  576. 'desc_bprop': [Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7],
  577. [1, 3, 7, 9]]).astype(np.float32))]}),
  578. ('ReduceSum_3', {
  579. 'block': P.ReduceSum(),
  580. 'desc_const': [0],
  581. 'desc_inputs': [[3, 2]],
  582. 'desc_bprop': [[2]]}),
  583. ('ReduceSum_4', {
  584. 'block': P.ReduceSum(keep_dims=True),
  585. 'desc_const': [0],
  586. 'desc_inputs': [[3, 2]],
  587. 'desc_bprop': [[1, 2]]}),
  588. ('ReduceSum_5', {
  589. 'block': P.ReduceSum(keep_dims=True),
  590. 'desc_inputs': [[2, 3, 4]],
  591. 'desc_bprop': [[1, 1, 1]]}),
  592. ('ReduceSum_6', {
  593. 'block': P.ReduceSum(),
  594. 'desc_inputs': [[2, 3, 4]],
  595. 'desc_bprop': [[1]]}),
  596. ('Sum_0', {
  597. 'block': P.ReduceSum(),
  598. 'desc_const': [(1,)],
  599. 'desc_inputs': [[3, 2]],
  600. 'desc_bprop': [[3]]}),
  601. ('Sum_1', {
  602. 'block': P.ReduceSum(keep_dims=True),
  603. 'desc_const': [(1,)],
  604. 'desc_inputs': [[3, 2]],
  605. 'desc_bprop': [[3, 1]]}),
  606. ('Sum_2', {
  607. 'block': P.ReduceSum(),
  608. 'desc_const': [(0, 1)],
  609. 'desc_inputs': [[3, 2]],
  610. 'desc_bprop': [[1]]}),
  611. ('Sum_3', {
  612. 'block': P.ReduceSum(),
  613. 'desc_const': [0],
  614. 'desc_inputs': [[3, 2]],
  615. 'desc_bprop': [[2]]}),
  616. ('Sum_4', {
  617. 'block': P.ReduceSum(keep_dims=True),
  618. 'desc_const': [0],
  619. 'desc_inputs': [[3, 2]],
  620. 'desc_bprop': [[1, 2]]}),
  621. ('Sum_5', {
  622. 'block': P.ReduceSum(keep_dims=True),
  623. 'desc_const': [()],
  624. 'desc_inputs': [[2, 3, 4]],
  625. 'desc_bprop': [[1, 1, 1]]}),
  626. ('Sum_6', {
  627. 'block': P.ReduceSum(),
  628. 'desc_const': [()],
  629. 'desc_inputs': [[2, 3, 4]],
  630. 'desc_bprop': [[1]]}),
  631. ('Sign', {
  632. 'block': P.Sign(),
  633. 'desc_inputs': [[3]],
  634. 'desc_bprop': [[3]]}),
  635. ('Round', {
  636. 'block': P.Round(),
  637. 'desc_inputs': [[3]],
  638. 'desc_bprop': [[3]]}),
  639. ('Atan2', {
  640. 'block': P.Atan2(),
  641. 'desc_inputs': [Tensor(np.array([0, 1]).astype(np.float32)),
  642. Tensor(np.array([1, 1]).astype(np.float32))],
  643. 'desc_bprop': [[2]]}),
  644. ('SquareSumAll', {
  645. 'block': P.SquareSumAll(),
  646. 'desc_inputs': [Tensor(np.array([0, 1, 4, 5]).astype(np.float32)),
  647. Tensor(np.array([1, 1, 3, 7]).astype(np.float32))],
  648. 'skip': ['backward']}),
  649. ('Cos', {
  650. 'block': P.Cos(),
  651. 'desc_inputs': [[2, 3]],
  652. 'desc_bprop': [[2, 3]]}),
  653. ('ReduceAll', {
  654. 'block': P.ReduceAll(),
  655. 'desc_const': [1],
  656. 'desc_inputs': [Tensor(np.array([[True, False], [True, True]]))],
  657. 'desc_bprop': []}),
  658. ('BesselI0e', {
  659. 'block': P.BesselI0e(),
  660. 'desc_inputs': [[2, 3]],
  661. 'desc_bprop': [[2, 3]]}),
  662. ('BesselI1e', {
  663. 'block': P.BesselI1e(),
  664. 'desc_inputs': [[2, 3]],
  665. 'desc_bprop': [[2, 3]]}),
  666. ('Atan', {
  667. 'block': P.Atan(),
  668. 'desc_inputs': [[2, 3]],
  669. 'desc_bprop': [[2, 3]]}),
  670. ('AtanGrad', {
  671. 'block': G.AtanGrad(),
  672. 'desc_inputs': [[2, 3], [2, 3]],
  673. 'skip': ['backward']}),
  674. ('Atanh', {
  675. 'block': P.Atanh(),
  676. 'desc_inputs': [[2, 3]],
  677. 'desc_bprop': [[2, 3]]}),
  678. ('Cosh', {
  679. 'block': P.Cosh(),
  680. 'desc_inputs': [[3, 4, 5]],
  681. 'desc_bprop': [[3, 4, 5]]}),
  682. ('Sinh', {
  683. 'block': P.Sinh(),
  684. 'desc_inputs': [[3, 4, 5]],
  685. 'desc_bprop': [[3, 4, 5]]}),
  686. ('Inv', {
  687. 'block': P.Inv(),
  688. 'desc_inputs': [[21, 9, 12, 5]],
  689. 'desc_bprop': [[21, 9, 12, 5]]}),
  690. ('Invert', {
  691. 'block': P.Invert(),
  692. 'desc_inputs': [Tensor(np.array([[24, 4, 13, 9], [1, 5, 10, 8]]).astype(np.int16))],
  693. 'desc_bprop': [],
  694. 'skip': ['backward']}),
  695. ]
  696. test_case_nn_ops = [
  697. ('BiasAdd', {
  698. 'block': P.BiasAdd(),
  699. 'desc_inputs': [[1, 3, 3, 3], [3]],
  700. 'desc_bprop': [[1, 3, 3, 3]]}),
  701. ('BiasAddGrad', {
  702. 'block': G.BiasAddGrad(),
  703. 'desc_inputs': [[1, 3, 3, 3]],
  704. 'skip': ['backward']}),
  705. ('Gelu', {
  706. 'block': P.Gelu(),
  707. 'desc_inputs': [[1, 3, 4, 4]],
  708. 'desc_bprop': [[1, 3, 4, 4]]}),
  709. ('GeluGrad', {
  710. 'block': G.GeluGrad(),
  711. 'desc_inputs': [[2, 2], [2, 2], [2, 2]],
  712. 'desc_bprop': [[2, 2]],
  713. 'skip': ['backward']}),
  714. ('Tanh', {
  715. 'block': P.Tanh(),
  716. 'desc_inputs': [[1, 3, 4, 4]],
  717. 'desc_bprop': [[1, 3, 4, 4]]}),
  718. ('TanhGrad', {
  719. 'block': G.TanhGrad(),
  720. 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
  721. 'desc_bprop': [[1, 3, 4, 4]],
  722. 'skip': ['backward']}),
  723. ('ReLU', {
  724. 'block': P.ReLU(),
  725. 'desc_inputs': [[1, 3, 4, 4]],
  726. 'desc_bprop': [[1, 3, 4, 4]]}),
  727. ('ReLU6', {
  728. 'block': P.ReLU6(),
  729. 'desc_inputs': [[1, 3, 4, 4]],
  730. 'desc_bprop': [[1, 3, 4, 4]]}),
  731. ('ReLUV2', {
  732. 'block': P.ReLUV2(),
  733. 'desc_inputs': [[1, 3, 4, 4]],
  734. 'desc_bprop': [[1, 3, 4, 4], ([1, 1, 4, 4, 2], {'dtype': np.uint8})]}),
  735. ('ReLUGrad', {
  736. 'block': G.ReluGrad(),
  737. 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
  738. 'skip': ['backward']}),
  739. ('Softplus', {
  740. 'block': P.Softplus(),
  741. 'desc_inputs': [[1, 3, 4, 4]],
  742. 'desc_bprop': [[1, 3, 4, 4]]}),
  743. ('SoftplusGrad', {
  744. 'block': G.SoftplusGrad(),
  745. 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
  746. 'skip': ['backward']}),
  747. ('Elu', {
  748. 'block': P.Elu(),
  749. 'desc_inputs': [[2, 3, 4]],
  750. 'desc_bprop': [[2, 3, 4]]}),
  751. ('EluGrad', {
  752. 'block': G.EluGrad(),
  753. 'desc_inputs': [[2, 3, 4], [2, 3, 4]],
  754. 'desc_bprop': [[2, 3, 4]],
  755. 'skip': ['backward']}),
  756. ('Sigmoid', {
  757. 'block': P.Sigmoid(),
  758. 'desc_inputs': [[1, 3, 4, 4]],
  759. 'desc_bprop': [[1, 3, 4, 4]]}),
  760. ('MaxPool', {
  761. 'block': P.MaxPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  762. 'desc_inputs': [[100, 3, 28, 28]],
  763. 'desc_bprop': [[100, 3, 14, 14]]}),
  764. ('MaxPoolGrad', {
  765. 'block': G.MaxPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  766. 'desc_inputs': [[3, 4, 6, 6], [3, 4, 3, 3], [3, 4, 3, 3]],
  767. 'desc_bprop': [[3, 4, 6, 6]],
  768. 'skip': ['backward']}),
  769. ('AvgPool', {
  770. 'block': P.AvgPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  771. 'desc_inputs': [[100, 3, 28, 28]],
  772. 'desc_bprop': [[100, 3, 14, 14]]}),
  773. ('AvgPoolGrad', {
  774. 'block': G.AvgPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  775. 'desc_const': [(3, 4, 6, 6)],
  776. 'const_first': True,
  777. 'desc_inputs': [[3, 4, 6, 6]],
  778. 'desc_bprop': [[3, 4, 6, 6]],
  779. 'skip': ['backward']}),
  780. ('MaxPoolWithArgmax', {
  781. 'block': P.MaxPoolWithArgmax(ksize=2, strides=2),
  782. 'desc_inputs': [[128, 32, 32, 64]],
  783. 'desc_bprop': [[128, 32, 16, 32], ([128, 32, 4, 33], {'dtype': np.uint16})]}),
  784. ('SoftmaxCrossEntropyWithLogits', {
  785. 'block': P.SoftmaxCrossEntropyWithLogits(),
  786. 'desc_inputs': [[1, 10], [1, 10]],
  787. 'desc_bprop': [[1], [1, 10]],
  788. 'skip': ['backward_exec']}),
  789. ('Flatten', {
  790. 'block': P.Flatten(),
  791. 'desc_inputs': [[128, 32, 32, 64]],
  792. 'desc_bprop': [[128, 65536]]}),
  793. ('LogSoftmax', {
  794. 'block': P.LogSoftmax(),
  795. 'desc_inputs': [[64, 2]],
  796. 'desc_bprop': [[64, 2]]}),
  797. ('LogSoftmaxGrad', {
  798. 'block': G.LogSoftmaxGrad(),
  799. 'desc_inputs': [[16, 1234], [16, 1234]],
  800. 'desc_bprop': [[64, 2]],
  801. 'skip': ['backward']}),
  802. ('L2Normalize', {
  803. 'block': P.L2Normalize(),
  804. 'desc_inputs': [[2, 2]],
  805. 'desc_bprop': [[2, 2]]}),
  806. ('L2NormalizeGrad', {
  807. 'block': G.L2NormalizeGrad(),
  808. 'desc_inputs': [[2, 2], [2, 2], [2, 2]],
  809. 'desc_bprop': [[2, 2]],
  810. 'skip': ['backward']}),
  811. ('LayerNorm', {
  812. 'block': P.LayerNorm(),
  813. 'desc_inputs': [[2, 16], [16], [16]],
  814. 'desc_bprop': [[2, 16], [2, 1], [2, 1]]}),
  815. ('LayerNormGrad', {
  816. 'block': G.LayerNormGrad(),
  817. 'desc_inputs': [[2, 16], [2, 16], [2, 16], [2, 16], [16]],
  818. 'desc_bprop': [[2, 16], [16], [16]],
  819. 'skip': ['backward']}),
  820. ('FusedBatchNorm', {
  821. 'block': P.FusedBatchNorm(),
  822. 'desc_inputs': [[128, 64, 32, 64], [64], [64], [64], [64]],
  823. 'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
  824. 'skip': []}),
  825. ('FusedBatchNormGrad', {
  826. 'block': G.FusedBatchNormGrad(),
  827. 'desc_inputs': [[128, 64, 32, 64], [128, 64, 32, 64], [64], [64], [64]],
  828. 'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
  829. 'skip': ['backward']}),
  830. ('BatchNorm', {
  831. 'block': P.BatchNorm(),
  832. 'desc_inputs': [[128, 64, 32, 32], [64], [64], [64], [64]],
  833. 'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
  834. 'skip': []}),
  835. ('BatchNormGrad', {
  836. 'block': G.BatchNormGrad(),
  837. 'desc_inputs': [[128, 64, 32, 32], [128, 64, 32, 32], [64], [64], [64]],
  838. 'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
  839. 'skip': ['backward']}),
  840. ('BasicLSTMCell', {
  841. 'block': P.BasicLSTMCell(keep_prob=1.0, forget_bias=1.0, state_is_tuple=True, activation='tanh'),
  842. 'desc_inputs': [[128, 128], [128, 128], [128, 128], [512, 256, 1, 1], [512, 1, 1, 1]],
  843. 'desc_bprop': [[128, 128], [128, 128], [128, 128], [128, 128], [128, 128], [128, 128], [128, 128]],
  844. 'skip': []}),
  845. ('TopK', {
  846. 'block': P.TopK(),
  847. 'desc_const': [5],
  848. 'desc_inputs': [[20, 20, 10]],
  849. 'desc_bprop': [[20, 20, 5]],
  850. 'skip': ['backward']}),
  851. ('GatherV2_0', {
  852. 'block': P.GatherV2(),
  853. 'desc_const': [0],
  854. 'desc_inputs': [[3, 1, 2], Tensor(np.array([0, 1]).astype(np.int32))],
  855. 'desc_bprop': [[2, 1, 2]]}),
  856. ('GatherV2_1', {
  857. 'block': P.GatherV2(),
  858. 'desc_const': [2],
  859. 'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
  860. 'desc_bprop': [[3, 1, 2]]}),
  861. ('GatherV2_2', {
  862. 'block': P.GatherV2(),
  863. 'desc_const': [0],
  864. 'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  865. 'desc_bprop': [[3, 2, 1, 3]]}),
  866. ('GatherV2_3', {
  867. 'block': P.GatherV2(),
  868. 'desc_const': [2],
  869. 'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  870. 'desc_bprop': [[3, 1, 3, 2]]}),
  871. ('GatherV2_4', {
  872. 'block': P.GatherV2(),
  873. 'desc_const': [1],
  874. 'desc_inputs': [[32, 5, 1024], Tensor(np.array([3]).astype(np.int32))],
  875. 'desc_bprop': [[32, 1, 1024]]}),
  876. ('GatherV2_5', {
  877. 'block': P.GatherV2(),
  878. 'desc_const': [-1],
  879. 'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
  880. 'desc_bprop': [[3, 1, 2]]}),
  881. ('GatherV2_6', {
  882. 'block': P.GatherV2(),
  883. 'desc_const': [0],
  884. 'desc_inputs': [[1152], Tensor(np.array(10).astype(np.int32))],
  885. 'desc_bprop': [Tensor(np.array(10).astype(np.float32))]}),
  886. ('SparseGatherV2_0', {
  887. 'block': P.SparseGatherV2(),
  888. 'desc_const': [0],
  889. 'desc_inputs': [[3, 1, 2], Tensor(np.array([0, 1]).astype(np.int32))],
  890. 'desc_bprop': [[2, 1, 2]]}),
  891. ('Range', {
  892. 'block': P.Range(1.0, 5.0),
  893. 'desc_inputs': [Tensor(np.ones([10]).astype(np.float32))],
  894. 'desc_bprop': [[10]]}),
  895. ('UnsortedSegmentSum', {
  896. 'block': P.UnsortedSegmentSum(),
  897. 'desc_const': [1280],
  898. 'desc_inputs': [[1280, 1024], Tensor(np.ones(1280).astype(np.int32))],
  899. 'desc_bprop': [[8192, 1024]],
  900. 'skip': ['backward']}),
  901. ('UnsortedSegmentSum_1', {
  902. 'block': P.UnsortedSegmentSum(),
  903. 'desc_const': [4],
  904. 'desc_inputs': [[3, 2, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  905. 'desc_bprop': [[4, 1, 3]],
  906. 'skip': ['backward']}),
  907. ('UnsortedSegmentMin', {
  908. 'block': P.UnsortedSegmentMin(),
  909. 'desc_const': [4],
  910. 'desc_inputs': [[3, 2, 1, 3], Tensor(np.array([1, 2, 3]).astype(np.int32))],
  911. 'desc_bprop': [[4, 2, 1, 3]]}),
  912. ('DropoutGenMask', {
  913. 'block': P.DropoutGenMask(),
  914. 'desc_const': [(2, 2), Tensor(0.5, mstype.float32)],
  915. 'desc_inputs': [],
  916. 'desc_bprop': [Tensor(np.ones(1).astype(np.int8))],
  917. 'skip': ['backward']}),
  918. ('DropoutDoMask', {
  919. 'block': P.DropoutDoMask(),
  920. 'desc_const': [Tensor(0.5)],
  921. 'desc_inputs': [[64, 12, 128, 128], Tensor(np.ones(1572864).astype(np.uint8))],
  922. 'desc_bprop': [[64, 12, 128, 128]]}),
  923. ('Dropout', {
  924. 'block': nn.Dropout(0.5),
  925. 'desc_inputs': [[64, 12, 128, 128]],
  926. 'desc_bprop': [[64, 12, 128, 128]]}),
  927. ('ReduceMean0', {
  928. 'block': P.ReduceMean(),
  929. 'desc_const': [(2,)],
  930. 'desc_inputs': [[3, 2, 2]],
  931. 'desc_bprop': [[3, 2]]}),
  932. ('ReduceMean1', {
  933. 'block': P.ReduceMean(),
  934. 'desc_const': [2],
  935. 'desc_inputs': [[3, 2, 2]],
  936. 'desc_bprop': [[3, 2]]}),
  937. ('All', {
  938. 'block': P.ReduceAll(),
  939. 'desc_const': [(1,)],
  940. 'desc_inputs': [Tensor(np.ones([3, 2]).astype(np.bool_))],
  941. 'desc_bprop': [[3]],
  942. 'skip': ['backward']}),
  943. ('DescConst', {
  944. 'block': Tensor(np.array([2], np.float32)),
  945. 'desc_inputs': [],
  946. 'desc_bprop': [[1]],
  947. 'skip': ['backward'],
  948. 'add_fake_input': True}),
  949. ('Fill', {
  950. 'block': P.Fill(),
  951. 'desc_const': [mstype.float32, (2, 3), 1.0],
  952. 'desc_inputs': [],
  953. 'desc_bprop': [[2, 3]],
  954. 'skip': ['backward'],
  955. 'add_fake_input': True}),
  956. ('OnesLike', {
  957. 'block': P.OnesLike(),
  958. 'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
  959. 'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
  960. }),
  961. ('ZerosLike', {
  962. 'block': P.ZerosLike(),
  963. 'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
  964. 'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
  965. }),
  966. ('Softmax', {
  967. 'block': P.Softmax(),
  968. 'desc_inputs': [[5, 5]],
  969. 'desc_bprop': [[5, 5]]}),
  970. ('DepthwiseConv2dNative_1', {
  971. 'block': P.DepthwiseConv2dNative(3, (3, 3), pad_mode="pad", pad=1, stride=2),
  972. 'desc_inputs': [[10, 32, 32, 32], [1, 32, 3, 3]],
  973. 'desc_bprop': [[10, 32, 16, 16]]}),
  974. ('DepthwiseConv2dNative_2', {
  975. 'block': P.DepthwiseConv2dNative(1, (3, 3), pad_mode="same", pad=0, stride=1),
  976. 'desc_inputs': [[2592, 2048, 4, 4], [1, 2048, 3, 3]],
  977. 'desc_bprop': [[2592, 2048, 4, 4]]}),
  978. ('SigmoidCrossEntropyWithLogits', {
  979. 'block': P.SigmoidCrossEntropyWithLogits(),
  980. 'desc_inputs': [[128, 10], [128, 10]],
  981. 'desc_bprop': [[128, 10]]}),
  982. ('Pad', {
  983. 'block': P.Pad(((1, 2), (2, 3))),
  984. 'desc_inputs': [[7, 7]],
  985. 'desc_bprop': [[10, 12]]}),
  986. ('BinaryCrossEntropy', {
  987. 'block': P.BinaryCrossEntropy(),
  988. 'desc_inputs': [[1, 2, 3], [1, 2, 3], [1, 2, 3]],
  989. 'desc_bprop': []}),
  990. ('SparseApplyAdagrad', {
  991. 'block': P.SparseApplyAdagrad(0.5),
  992. 'desc_inputs': [[3, 3], [3, 3], [3, 3], Tensor(np.ones((3,), np.int32))],
  993. 'desc_bprop': [[3, 3], [3, 3]],
  994. 'skip': ['backward']}),
  995. ('SparseApplyFtrl', {
  996. 'block': SparseApplyFtrlNet(),
  997. 'desc_inputs': [[3, 3], Tensor(np.ones((3,), np.int32))],
  998. 'skip': ['backward']}),
  999. ('ApplyProximalAdagrad', {
  1000. 'block': ApplyProximalAdagradNet(),
  1001. 'desc_inputs': [[3, 3]],
  1002. 'skip': ['backward']}),
  1003. ('SparseApplyProximalAdagrad', {
  1004. 'block': SparseApplyProximalAdagradNet(),
  1005. 'desc_inputs': [[3, 3], Tensor(np.ones((3,), np.int32))],
  1006. 'skip': ['backward']}),
  1007. ('Flatten_1', {
  1008. 'block': NetForFlatten(),
  1009. 'desc_inputs': [Tensor(np.ones([2, 3, 4]).astype(np.int32)), Tensor(np.ones([2, 12]).astype(np.int32))],
  1010. 'desc_bprop': [Tensor(np.ones([2, 12]).astype(np.int32))],
  1011. 'skip': ['backward']}),
  1012. ('Flatten_2', {
  1013. 'block': NetForFlatten(),
  1014. 'desc_inputs': [Tensor(np.ones([8]).astype(np.int32)), Tensor(np.ones([8, 3]).astype(np.int32))],
  1015. 'desc_bprop': [Tensor(np.ones([8, 3]).astype(np.int32))],
  1016. 'skip': ['backward']}),
  1017. ('Flatten_3', {
  1018. 'block': NetForFlattenComposed(),
  1019. 'desc_inputs': [Tensor(np.ones([2, 3, 4]).astype(np.int32)), Tensor(np.ones([2, 12]).astype(np.int32))],
  1020. 'desc_bprop': [Tensor(np.ones([2, 12]).astype(np.int32))],
  1021. 'skip': []}),
  1022. ('ArgmaxNet', {
  1023. 'block': ArgmaxNet(),
  1024. 'desc_inputs': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
  1025. 'desc_bprop': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
  1026. 'skip': ['backward']}),
  1027. ('ArgminNet', {
  1028. 'block': ArgminNet(),
  1029. 'desc_inputs': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
  1030. 'desc_bprop': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
  1031. 'skip': ['backward']}),
  1032. ('OneHot', {
  1033. 'block': P.OneHot(),
  1034. 'desc_const': [3, Tensor(1.0, mstype.float32), Tensor(0.0, mstype.float32)],
  1035. 'desc_inputs': [Tensor(np.array([64]).astype(np.int32))],
  1036. 'desc_bprop': [[1, 3]]}),
  1037. ('ReduceProd_0', {
  1038. 'block': P.ReduceProd(),
  1039. 'desc_const': [0],
  1040. 'desc_inputs': [[3, 2]],
  1041. 'desc_bprop': [[2]]}),
  1042. ('ReduceProd_1', {
  1043. 'block': P.ReduceProd(keep_dims=True),
  1044. 'desc_const': [0],
  1045. 'desc_inputs': [[3, 2]],
  1046. 'desc_bprop': [[1, 2]]}),
  1047. ('CumProd', {
  1048. 'block': P.CumProd(),
  1049. 'desc_const': [0],
  1050. 'desc_inputs': [[3, 2]],
  1051. 'desc_bprop': [[3, 2]]}),
  1052. ('ApplyFtrl', {
  1053. 'block': ApplyFtrlNet(),
  1054. 'desc_inputs': [[3, 3]],
  1055. 'desc_bprop': [3, 3],
  1056. 'skip': ['backward']}),
  1057. ('ApplyRMSProp', {
  1058. 'block': ApplyRMSNet(),
  1059. 'desc_inputs': [[3, 3]],
  1060. 'desc_bprop': [3, 3],
  1061. 'skip': ['backward']}),
  1062. ('ApplyCenteredRMSProp', {
  1063. 'block': P.ApplyCenteredRMSProp(),
  1064. 'desc_const': [0.9, 0.0, 1e-10, 0.001],
  1065. 'desc_inputs': [Tensor(1., mstype.float32), Tensor(2., mstype.float32), Tensor(1., mstype.float32),
  1066. Tensor(2., mstype.float32), Tensor(1., mstype.float32)],
  1067. 'desc_bprop': [1],
  1068. 'skip': ['backward']}),
  1069. ('CTCLoss', {
  1070. 'block': P.CTCLoss(),
  1071. 'desc_inputs': [Tensor(np.ones([6, 4, 6]).astype(np.float32)),
  1072. Tensor(np.array([[0, 1], [1, 0], [2, 3], [3, 2]]).astype(np.int64)),
  1073. Tensor(np.array([1, 2, 3, 4]).astype(np.int32)),
  1074. Tensor(np.array([6, 6, 6, 6]).astype(np.int32))],
  1075. 'desc_bprop': [[4], [6, 4, 6]]}),
  1076. ('L2Loss_1', {
  1077. 'block': P.L2Loss(),
  1078. 'desc_inputs': [Tensor(np.array([1, 2, 3, 4]), mstype.float32)],
  1079. 'desc_bprop': []}),
  1080. ('L2Loss_2', {
  1081. 'block': P.L2Loss(),
  1082. 'desc_inputs': [Tensor(np.array([[1, 1], [2, 2], [3, 3], [4, 4]]), mstype.float16)],
  1083. 'desc_bprop': []}),
  1084. ('ResizeBilinear', {
  1085. 'block': P.ResizeBilinear((5, 5)),
  1086. 'desc_inputs': [Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mstype.float16)],
  1087. 'desc_bprop': [Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mstype.float16)]}),
  1088. ('ResizeBilinearGrad', {
  1089. 'block': G.ResizeBilinearGrad(),
  1090. 'desc_inputs': [Tensor([[[[1, 2, 3, 4, 5]]]], mstype.float32), Tensor([[[[1, 2, 3, 4, 5]]]], mstype.float32)],
  1091. 'desc_bprop': [Tensor([[[[1, 2, 3, 4, 5]]]], mstype.float32)],
  1092. 'skip': ['backward']}),
  1093. ('ROIAlign', {
  1094. 'block': P.ROIAlign(7, 7, 0.03125, 2),
  1095. 'desc_inputs': [[2, 256, 192, 320], [1024, 5]],
  1096. 'desc_bprop': [[7, 7]]}),
  1097. ('ROIAlignGrad', {
  1098. 'block': G.ROIAlignGrad((1, 1, 1, 1), 2, 2, 0.5, 2),
  1099. 'desc_inputs': [[1, 1, 2, 2], [1, 5]],
  1100. 'desc_bprop': [[1, 1, 2, 2]],
  1101. 'skip': ['backward']}),
  1102. ('LARSUpdate', {
  1103. 'block': P.LARSUpdate(1e-05, 0.001, False),
  1104. 'desc_const': [0.0, 0.001],
  1105. 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3]],
  1106. 'desc_bprop': [3, 3],
  1107. 'skip': ['backward']}),
  1108. ('SGD', {
  1109. 'block': P.SGD(0.0, 0.0, False),
  1110. 'desc_inputs': [[3, 3], [3, 3], Tensor(0.001, mstype.float32), [3, 3], Tensor(0.1, mstype.float32), [3, 3]],
  1111. 'desc_bprop': [3, 3],
  1112. 'skip': ['backward']}),
  1113. ('BinaryCrossEntropy', {
  1114. 'block': P.BinaryCrossEntropy(),
  1115. 'desc_inputs': [Tensor([[0.3, 0.8], [0.4, 0.3]], mstype.float16),
  1116. Tensor([[0.4, 1.2], [-0.4, -0.9]], mstype.float16),
  1117. Tensor([[-1.4, -0.7], [0.9, 0.7]], mstype.float16)],
  1118. 'desc_bprop': []}),
  1119. ('BinaryCrossEntropyGrad', {
  1120. 'block': G.BinaryCrossEntropyGrad(),
  1121. 'desc_inputs': [Tensor([[0.3, 0.8], [0.4, 0.3]], mstype.float16),
  1122. Tensor([[0.4, 1.2], [-0.4, -0.9]], mstype.float16), Tensor(0.85, mstype.float16),
  1123. Tensor([[-1.4, -0.7], [0.9, 0.7]], mstype.float16)],
  1124. 'desc_bprop': [],
  1125. 'skip': ['backward']}),
  1126. ('SparseApplyAdagrad', {
  1127. 'block': P.SparseApplyAdagrad(0.5),
  1128. 'desc_inputs': [Tensor([[0.7, 0.2], [0.1, 0.07]], mstype.float32),
  1129. Tensor([[0.2, 0.2], [0.1, 0.4]], mstype.float32),
  1130. Tensor([[0.5, 0.4], [0.6, 0.1]], mstype.float32), Tensor([1, 1], mstype.int32)],
  1131. 'desc_bprop': [Tensor([[0.7, 0.2], [0.1, 0.07]], mstype.float32)],
  1132. 'skip': ['backward']}),
  1133. ]
  1134. test_case_array_ops = [
  1135. ('SpaceToDepth', {
  1136. 'block': P.SpaceToDepth(2),
  1137. 'desc_inputs': [[1, 3, 2, 2]],
  1138. 'desc_bprop': [[1, 12, 1, 1]]}),
  1139. ('DepthToSpace', {
  1140. 'block': P.DepthToSpace(2),
  1141. 'desc_inputs': [[1, 12, 1, 1]],
  1142. 'desc_bprop': [[1, 3, 2, 2]]}),
  1143. ('Split', {
  1144. 'block': P.Split(1, 2),
  1145. 'desc_inputs': [Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]))],
  1146. 'skip': ['backward']}),
  1147. ('Argmax', {
  1148. 'block': P.Argmax(),
  1149. 'desc_inputs': [[128, 32, 32, 64]],
  1150. 'desc_bprop': [0],
  1151. 'skip': ['backward']}),
  1152. ('Argmin', {
  1153. 'block': P.Argmin(),
  1154. 'desc_inputs': [[128, 32, 32, 64]],
  1155. 'desc_bprop': [1],
  1156. 'skip': ['backward']}),
  1157. ('ArgMaxWithValue', {
  1158. 'block': P.ArgMaxWithValue(),
  1159. 'desc_inputs': [[128, 32, 32, 64]],
  1160. 'desc_bprop': [[1], [1]],
  1161. 'skip': ['backward']}),
  1162. ('ArgMinWithValue', {
  1163. 'block': P.ArgMinWithValue(),
  1164. 'desc_inputs': [[128, 32, 32, 64]],
  1165. 'desc_bprop': [[1], [1]],
  1166. 'skip': ['backward']}),
  1167. ('Transpose_dim3', {
  1168. 'block': P.Transpose(),
  1169. 'desc_const': [(0, 2, 1)],
  1170. 'desc_inputs': [[1, 2, 3]],
  1171. 'desc_bprop': [[1, 3, 2]]}),
  1172. ('Transpose_dim4', {
  1173. 'block': P.Transpose(),
  1174. 'desc_const': [(0, 1, 2, 3)],
  1175. 'desc_inputs': [[1, 2, 3, 4]],
  1176. 'desc_bprop': [[1, 2, 4, 3]]}),
  1177. ('AddN', {
  1178. 'block': NetForTupleInput(P.AddN()),
  1179. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  1180. 'desc_bprop': [[2, 3, 3, 5]],
  1181. 'skip': ['backward']}),
  1182. ('Shape', {
  1183. 'block': P.Shape(),
  1184. 'desc_inputs': [[3, 3, 2, 2]],
  1185. 'skip': ['backward']}),
  1186. ('Reshape', {
  1187. 'block': P.Reshape(),
  1188. 'desc_const': [(64,)],
  1189. 'desc_inputs': [[64, 1]],
  1190. 'desc_bprop': [[64]]}),
  1191. ('Cast', {
  1192. 'block': P.Cast(),
  1193. 'desc_const': [mstype.int32],
  1194. 'desc_inputs': [[2, 3, 4, 5]],
  1195. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5)).astype(np.int32))]}),
  1196. ('ExpandDims', {
  1197. 'block': P.ExpandDims(),
  1198. 'desc_const': [0],
  1199. 'desc_inputs': [[2, 2]],
  1200. 'desc_bprop': [[1, 2, 2]]}),
  1201. ('ExpandDims_1', {
  1202. 'block': P.ExpandDims(),
  1203. 'desc_const': [-1],
  1204. 'desc_inputs': [[2, 2]],
  1205. 'desc_bprop': [[2, 2, 1]]}),
  1206. ('Squeeze', {
  1207. 'block': P.Squeeze(2),
  1208. 'desc_inputs': [[3, 2, 1]],
  1209. 'desc_bprop': [[3, 2]]}),
  1210. ('Squeeze_0', {
  1211. 'block': P.Squeeze(),
  1212. 'desc_inputs': [[3, 1, 2, 1]],
  1213. 'desc_bprop': [[3, 2]]}),
  1214. ('Squeeze_1', {
  1215. 'block': P.Squeeze(),
  1216. 'desc_inputs': [[1, 1, 1, 1]],
  1217. 'desc_bprop': [1.0],
  1218. 'skip': ['backward']}),
  1219. ('Squeeze_2', {
  1220. 'block': P.Squeeze((2, 3)),
  1221. 'desc_inputs': [[3, 2, 1, 1]],
  1222. 'desc_bprop': [[3, 2]]}),
  1223. ('Size', {
  1224. 'block': P.Size(),
  1225. 'desc_inputs': [[2, 3, 5]],
  1226. 'skip': ['backward']}),
  1227. ('Tile_0', {
  1228. 'block': P.Tile(),
  1229. 'desc_const': [(1, 2)],
  1230. 'desc_inputs': [[64, 1]],
  1231. 'desc_bprop': [[64, 2]]}),
  1232. ('Tile_1', {
  1233. 'block': P.Tile(),
  1234. 'desc_const': [(1, 1)],
  1235. 'desc_inputs': [[64, 1]],
  1236. 'desc_bprop': [[64, 1]]}),
  1237. ('Tile_2', {
  1238. 'block': P.Tile(),
  1239. 'desc_const': [(2, 1, 1, 2)],
  1240. 'desc_inputs': [[2, 2, 2]],
  1241. 'desc_bprop': [[2, 2, 2, 4]]}),
  1242. ('ConcatV2_0', {
  1243. 'block': P.Concat(),
  1244. 'desc_inputs': [
  1245. (Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)),
  1246. Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)))],
  1247. 'desc_bprop': [([4, 2], {'dtype': np.int32})]}),
  1248. ('ConcatV2_1', {
  1249. 'block': P.Concat(axis=2),
  1250. 'desc_inputs': [(Tensor(np.array([[[0, 1, 2]], [[2, 1, 2]]]).astype(np.int32)),
  1251. Tensor(np.array([[[0, 1]], [[2, 1]]]).astype(np.int32)))],
  1252. 'desc_bprop': [([2, 1, 5], {'dtype': np.int32})]}),
  1253. ('ConcatV2_2', {
  1254. 'block': NetForConcat(),
  1255. 'desc_inputs': [[2, 2]],
  1256. 'desc_bprop': [[4, 2]]}),
  1257. ('ConcatV2_3', {
  1258. 'block': NetForConcat1(),
  1259. 'desc_inputs': [[2, 2], [2, 2]],
  1260. 'desc_bprop': [[4, 2]]}),
  1261. ('ConcatV2_4', {
  1262. 'block': P.Concat(axis=0),
  1263. 'desc_inputs': [
  1264. (Tensor(np.ones((3, 2, 3), np.float32)),
  1265. Tensor(np.ones((5, 2, 3), np.float32)),
  1266. Tensor(np.ones((6, 2, 3), np.float32)))],
  1267. 'desc_bprop': [[14, 2, 3]]}),
  1268. ('ConcatV2_5', {
  1269. 'block': P.Concat(axis=-1),
  1270. 'desc_inputs': [(Tensor(np.array([1], np.float32)),
  1271. Tensor(np.array([1], np.float32)),
  1272. Tensor(np.array([1], np.float32)))],
  1273. 'desc_bprop': [[3,]]}),
  1274. ('Pack_0', {
  1275. 'block': NetForPackInput(P.Pack()),
  1276. 'desc_inputs': [[2, 2], [2, 2], [2, 2]],
  1277. 'desc_bprop': [[3, 2, 2]],
  1278. }),
  1279. ('Pack_1', {
  1280. 'block': NetForPackInput(P.Pack(axis=-2)),
  1281. 'desc_inputs': [[3, 2, 3], [3, 2, 3], [3, 2, 3]],
  1282. 'desc_bprop': [[3, 2, 3, 3]],
  1283. }),
  1284. ('Pack_2', {
  1285. 'block': NetForPackInput(P.Pack()),
  1286. 'desc_inputs': [[128, 128], [128, 128]],
  1287. 'desc_bprop': [[2, 128, 128]],
  1288. }),
  1289. ('Unpack_0', {
  1290. 'block': NetForUnpackInput(P.Unpack(axis=0)),
  1291. 'desc_inputs': [[2, 4]],
  1292. 'desc_bprop': [[4], [4]],
  1293. }),
  1294. ('Unpack_1', {
  1295. 'block': NetForUnpackInput(P.Unpack(axis=-1)),
  1296. 'desc_inputs': [Tensor(np.array([[1, 1, 1]], np.float32))],
  1297. 'desc_bprop': [[1], [1], [1]],
  1298. }),
  1299. ('Diag_1', {
  1300. 'block': P.Diag(),
  1301. 'desc_inputs': [[4]],
  1302. 'desc_bprop': [[4, 4]],
  1303. }),
  1304. ('Diag_2', {
  1305. 'block': P.Diag(),
  1306. 'desc_inputs': [[4, 4]],
  1307. 'desc_bprop': [[4, 4, 4, 4]],
  1308. }),
  1309. ('DiagPart_1', {
  1310. 'block': P.DiagPart(),
  1311. 'desc_inputs': [[4, 4]],
  1312. 'desc_bprop': [[4]],
  1313. }),
  1314. ('DiagPart_2', {
  1315. 'block': P.DiagPart(),
  1316. 'desc_inputs': [[4, 4, 4, 4]],
  1317. 'desc_bprop': [[4, 4]],
  1318. }),
  1319. ('SpaceToBatch_1', {
  1320. 'block': P.SpaceToBatch(2, [[0, 0], [0, 0]]),
  1321. 'desc_inputs': [[1, 3, 2, 2]],
  1322. 'desc_bprop': [[4, 3, 1, 1]],
  1323. }),
  1324. ('SpaceToBatch_2', {
  1325. 'block': P.SpaceToBatch(2, [[1, 1], [0, 4]]),
  1326. 'desc_inputs': [[1, 3, 2, 2]],
  1327. 'desc_bprop': [[4, 3, 2, 3]],
  1328. }),
  1329. ('BatchToSpace_1', {
  1330. 'block': P.BatchToSpace(2, [[0, 0], [0, 0]]),
  1331. 'desc_inputs': [[4, 3, 1, 1]],
  1332. 'desc_bprop': [[1, 3, 2, 2]],
  1333. }),
  1334. ('BatchToSpace_2', {
  1335. 'block': P.BatchToSpace(2, [[0, 0], [0, 1]]),
  1336. 'desc_inputs': [[4, 3, 1, 1]],
  1337. 'desc_bprop': [[1, 3, 2, 1]],
  1338. }),
  1339. ('UnsortedSegmentMin_1', {
  1340. 'block': P.UnsortedSegmentMin(),
  1341. 'desc_const': [2],
  1342. 'desc_inputs': [Tensor(np.array([[1, 2, 3], [4, 5, 6], [4, 2, 1]]).astype(np.float32)),
  1343. Tensor(np.array([0, 1, 1]).astype(np.int32))],
  1344. 'desc_bprop': [Tensor(np.array([[1, 2, 3], [4, 2, 1]]).astype(np.float32))]}),
  1345. ('BroadcastTo', {
  1346. 'block': P.BroadcastTo((2,3)),
  1347. 'desc_inputs': [Tensor(np.array([1, 2, 3]).astype(np.float32))],
  1348. 'desc_bprop': [Tensor(np.array([[1, 2, 3], [1, 2, 3]]).astype(np.float32))]}),
  1349. ]
  1350. test_case_other_ops = [
  1351. ('ScalarLog', {
  1352. 'block': F.scalar_log,
  1353. 'desc_const': [0.0],
  1354. 'desc_inputs': [],
  1355. 'desc_bprop': [1],
  1356. 'skip': ['backward']}),
  1357. ('BoundingBoxEncode', {
  1358. 'block': P.BoundingBoxEncode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)),
  1359. 'desc_inputs': [[256, 4], [256, 4]],
  1360. 'desc_bprop': [[256, 4]],
  1361. 'skip': ['backward']}),
  1362. ('BoundingBoxDecode', {
  1363. 'block': P.BoundingBoxDecode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0), max_shape=(768, 1280)),
  1364. 'desc_inputs': [[256, 4], [256, 4]],
  1365. 'desc_bprop': [[256, 4]],
  1366. 'skip': ['backward']}),
  1367. ('GatherNd', {
  1368. 'block': P.GatherNd(),
  1369. 'desc_inputs': (Tensor(np.ones((1, 3, 6, 6), np.float32)),
  1370. Tensor(np.ones((2, 4), np.int32))),
  1371. 'desc_bprop': [[2]]}),
  1372. ('ScatterNd', {
  1373. 'block': P.ScatterNd(),
  1374. 'desc_const': [(3, 3)],
  1375. 'desc_inputs': (Tensor(np.ones((2, 2), np.int32)),
  1376. Tensor(np.ones((2,), np.int32))),
  1377. 'desc_bprop': [([3, 3], {'dtype': np.int32})]}),
  1378. ('ScatterMax', {
  1379. 'block': ScatterMax(),
  1380. 'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)),
  1381. Tensor(np.ones([2, 2, 3], np.float32) * 99)),
  1382. 'skip': ['backward']}),
  1383. ('ScatterAdd', {
  1384. 'block': ScatterAdd((6,)),
  1385. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  1386. Tensor(np.array([2.0, 3.0, 4.0], np.float32))),
  1387. 'skip': ['backward']}),
  1388. ('ScatterAdd2d', {
  1389. 'block': ScatterAdd((3, 4)),
  1390. 'desc_inputs': (Tensor(np.array([[0, 1], [1, 2]], np.int32)),
  1391. Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2]],
  1392. [[3, 3, 3, 3], [4, 4, 4, 4]]], np.float32))),
  1393. 'skip': ['backward']}),
  1394. ('SmoothL1Loss', {
  1395. 'block': P.SmoothL1Loss(),
  1396. 'desc_inputs': [[256, 4], [256, 4]],
  1397. 'desc_bprop': [[256, 4]]}),
  1398. ('IOU', {
  1399. 'block': P.IOU(),
  1400. 'desc_inputs': [Tensor(np.ones((256, 4), np.float16)), Tensor(np.ones((128, 4), np.float16))],
  1401. 'desc_bprop': [[128, 256]]}),
  1402. ('Summary', {
  1403. 'block': SummaryNet(),
  1404. 'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
  1405. Tensor(np.array([1.2]).astype(np.float32))],
  1406. 'skip': ['backward']}),
  1407. ('ConfusionMulGrad_1', {
  1408. 'block': P.ConfusionMulGrad(axis=[0], keep_dims=False),
  1409. 'desc_inputs': [[3, 2], [3, 2], [3, 2]],
  1410. 'desc_bprop': [[3, 2], [2]],
  1411. 'skip': ['backward']}),
  1412. ('ConfusionMulGrad_2', {
  1413. 'block': P.ConfusionMulGrad(axis=[0], keep_dims=True),
  1414. 'desc_inputs': [[3, 2], [3, 2], [3, 2]],
  1415. 'desc_bprop': [[3, 2], [1, 2]],
  1416. 'skip': ['backward']}),
  1417. ('ConfusionMulGrad_3', {
  1418. 'block': P.ConfusionMulGrad(axis=(), keep_dims=True),
  1419. 'desc_inputs': [[2, 3, 4], [2, 3, 4], [2, 3, 4]],
  1420. 'desc_bprop': [[2, 3, 4], [1, 1, 1]],
  1421. 'skip': ['backward']}),
  1422. ('HistogramSummary', {
  1423. 'block': HistogramSummaryNet(),
  1424. 'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
  1425. Tensor(np.array([1.2]).astype(np.float32))],
  1426. 'skip': ['backward']}),
  1427. ]
  1428. test_case_lists = [test_case_nn_ops, test_case_math_ops, test_case_array_ops, test_case_other_ops]
  1429. test_case = functools.reduce(lambda x, y: x + y, test_case_lists)
  1430. # use -k to select certain testcast
  1431. # pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
  1432. test_exec_case = test_case
  1433. test_backward_exec_case = filter(lambda x: 'skip' not in x[1] or 'backward' not in x[1]['skip'], test_case)
  1434. @non_graph_engine
  1435. @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
  1436. def test_exec():
  1437. context.set_context(mode=context.GRAPH_MODE)
  1438. return test_exec_case
  1439. @mindspore_test(pipeline_for_compile_grad_ge_graph_for_case_by_case_config)
  1440. def test_backward_exec():
  1441. context.set_context(mode=context.GRAPH_MODE)
  1442. return test_backward_exec_case
  1443. raise_set = [
  1444. ('Cast_Error', {
  1445. 'block': (P.Cast(), {'exception': TypeError}),
  1446. 'desc_const': [mstype.int32],
  1447. 'desc_inputs': ['wrong input'],
  1448. 'desc_bprop': [Tensor(np.ones((2, 3, 3, 5)).astype(np.int32))]}),
  1449. ('Maximum_Error', {
  1450. 'block': (P.Maximum(), {'exception': TypeError}),
  1451. 'desc_const': [(1, 2, 3)],
  1452. 'desc_inputs': [[2, 3, 3, 5]],
  1453. 'desc_bprop': [[2, 3, 3, 5]]}),
  1454. ('Shape_error', {
  1455. 'block': (P.Shape(), {'exception': TypeError}),
  1456. 'desc_inputs': [(64, 1)],
  1457. 'desc_bprop': [[64]]}),
  1458. ('Flatten_Error', {
  1459. 'block': (NetForFlatten0D(), {'exception': ValueError}),
  1460. 'desc_inputs': [Tensor(np.array(0).astype(np.int32))],
  1461. 'desc_bprop': [Tensor(np.array(0).astype(np.int32))]}),
  1462. ('ScatterNdUpdate', {
  1463. 'block': (P.ScatterNdUpdate(), {'exception': TypeError}),
  1464. 'desc_inputs': (Tensor(np.ones((2, 3), np.float32)),
  1465. Tensor(np.ones((2, 2), np.float32)),
  1466. Tensor(np.ones((2,), np.float32))),
  1467. 'desc_bprop': [[2, 3]]}),
  1468. ('Pack', {
  1469. 'block': (NetForPackInput(P.Pack()), {'exception': ValueError}),
  1470. 'desc_inputs': [[2, 2]],
  1471. 'desc_bprop': [[1, 2, 2]]}),
  1472. ('PReLU', {
  1473. 'block': (P.PReLU(), {'exception': ValueError}),
  1474. 'desc_inputs': [[2], [1]],
  1475. 'desc_bprop': [[1]]}),
  1476. ]
  1477. @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
  1478. def test_check_exception():
  1479. return raise_set