You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_autocontrast.py 8.8 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. """
  16. Testing AutoContrast op in DE
  17. """
  18. import numpy as np
  19. import mindspore.dataset.engine as de
  20. import mindspore.dataset.transforms.vision.py_transforms as F
  21. import mindspore.dataset.transforms.vision.c_transforms as C
  22. from mindspore import log as logger
  23. from util import visualize_list, diff_mse, save_and_check_md5
  24. DATA_DIR = "../data/dataset/testImageNetData/train/"
  25. GENERATE_GOLDEN = False
  26. def test_auto_contrast_py(plot=False):
  27. """
  28. Test AutoContrast
  29. """
  30. logger.info("Test AutoContrast Python Op")
  31. # Original Images
  32. ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  33. transforms_original = F.ComposeOp([F.Decode(),
  34. F.Resize((224, 224)),
  35. F.ToTensor()])
  36. ds_original = ds.map(input_columns="image",
  37. operations=transforms_original())
  38. ds_original = ds_original.batch(512)
  39. for idx, (image, _) in enumerate(ds_original):
  40. if idx == 0:
  41. images_original = np.transpose(image, (0, 2, 3, 1))
  42. else:
  43. images_original = np.append(images_original,
  44. np.transpose(image, (0, 2, 3, 1)),
  45. axis=0)
  46. # AutoContrast Images
  47. ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  48. transforms_auto_contrast = F.ComposeOp([F.Decode(),
  49. F.Resize((224, 224)),
  50. F.AutoContrast(),
  51. F.ToTensor()])
  52. ds_auto_contrast = ds.map(input_columns="image",
  53. operations=transforms_auto_contrast())
  54. ds_auto_contrast = ds_auto_contrast.batch(512)
  55. for idx, (image, _) in enumerate(ds_auto_contrast):
  56. if idx == 0:
  57. images_auto_contrast = np.transpose(image, (0, 2, 3, 1))
  58. else:
  59. images_auto_contrast = np.append(images_auto_contrast,
  60. np.transpose(image, (0, 2, 3, 1)),
  61. axis=0)
  62. num_samples = images_original.shape[0]
  63. mse = np.zeros(num_samples)
  64. for i in range(num_samples):
  65. mse[i] = diff_mse(images_auto_contrast[i], images_original[i])
  66. logger.info("MSE= {}".format(str(np.mean(mse))))
  67. # Compare with expected md5 from images
  68. filename = "autcontrast_01_result_py.npz"
  69. save_and_check_md5(ds_auto_contrast, filename, generate_golden=GENERATE_GOLDEN)
  70. if plot:
  71. visualize_list(images_original, images_auto_contrast)
  72. def test_auto_contrast_c(plot=False):
  73. """
  74. Test AutoContrast C Op
  75. """
  76. logger.info("Test AutoContrast C Op")
  77. # AutoContrast Images
  78. ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  79. ds = ds.map(input_columns=["image"],
  80. operations=[C.Decode(),
  81. C.Resize((224, 224))])
  82. python_op = F.AutoContrast()
  83. c_op = C.AutoContrast()
  84. transforms_op = F.ComposeOp([lambda img: F.ToPIL()(img.astype(np.uint8)),
  85. python_op,
  86. np.array])()
  87. ds_auto_contrast_py = ds.map(input_columns="image",
  88. operations=transforms_op)
  89. ds_auto_contrast_py = ds_auto_contrast_py.batch(512)
  90. for idx, (image, _) in enumerate(ds_auto_contrast_py):
  91. if idx == 0:
  92. images_auto_contrast_py = image
  93. else:
  94. images_auto_contrast_py = np.append(images_auto_contrast_py,
  95. image,
  96. axis=0)
  97. ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  98. ds = ds.map(input_columns=["image"],
  99. operations=[C.Decode(),
  100. C.Resize((224, 224))])
  101. ds_auto_contrast_c = ds.map(input_columns="image",
  102. operations=c_op)
  103. ds_auto_contrast_c = ds_auto_contrast_c.batch(512)
  104. for idx, (image, _) in enumerate(ds_auto_contrast_c):
  105. if idx == 0:
  106. images_auto_contrast_c = image
  107. else:
  108. images_auto_contrast_c = np.append(images_auto_contrast_c,
  109. image,
  110. axis=0)
  111. num_samples = images_auto_contrast_c.shape[0]
  112. mse = np.zeros(num_samples)
  113. for i in range(num_samples):
  114. mse[i] = diff_mse(images_auto_contrast_c[i], images_auto_contrast_py[i])
  115. logger.info("MSE= {}".format(str(np.mean(mse))))
  116. np.testing.assert_equal(np.mean(mse), 0.0)
  117. if plot:
  118. visualize_list(images_auto_contrast_c, images_auto_contrast_py, visualize_mode=2)
  119. def test_auto_contrast_one_channel_c(plot=False):
  120. """
  121. Test AutoContrast C op with one channel
  122. """
  123. logger.info("Test AutoContrast C Op With One Channel Images")
  124. # AutoContrast Images
  125. ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  126. ds = ds.map(input_columns=["image"],
  127. operations=[C.Decode(),
  128. C.Resize((224, 224))])
  129. python_op = F.AutoContrast()
  130. c_op = C.AutoContrast()
  131. # not using F.ToTensor() since it converts to floats
  132. transforms_op = F.ComposeOp([lambda img: (np.array(img)[:, :, 0]).astype(np.uint8),
  133. F.ToPIL(),
  134. python_op,
  135. np.array])()
  136. ds_auto_contrast_py = ds.map(input_columns="image",
  137. operations=transforms_op)
  138. ds_auto_contrast_py = ds_auto_contrast_py.batch(512)
  139. for idx, (image, _) in enumerate(ds_auto_contrast_py):
  140. if idx == 0:
  141. images_auto_contrast_py = image
  142. else:
  143. images_auto_contrast_py = np.append(images_auto_contrast_py,
  144. image,
  145. axis=0)
  146. ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  147. ds = ds.map(input_columns=["image"],
  148. operations=[C.Decode(),
  149. C.Resize((224, 224)),
  150. lambda img: np.array(img[:, :, 0])])
  151. ds_auto_contrast_c = ds.map(input_columns="image",
  152. operations=c_op)
  153. ds_auto_contrast_c = ds_auto_contrast_c.batch(512)
  154. for idx, (image, _) in enumerate(ds_auto_contrast_c):
  155. if idx == 0:
  156. images_auto_contrast_c = image
  157. else:
  158. images_auto_contrast_c = np.append(images_auto_contrast_c,
  159. image,
  160. axis=0)
  161. num_samples = images_auto_contrast_c.shape[0]
  162. mse = np.zeros(num_samples)
  163. for i in range(num_samples):
  164. mse[i] = diff_mse(images_auto_contrast_c[i], images_auto_contrast_py[i])
  165. logger.info("MSE= {}".format(str(np.mean(mse))))
  166. np.testing.assert_equal(np.mean(mse), 0.0)
  167. if plot:
  168. visualize_list(images_auto_contrast_c, images_auto_contrast_py, visualize_mode=2)
  169. def test_auto_contrast_invalid_input_c():
  170. """
  171. Test AutoContrast C Op with invalid params
  172. """
  173. logger.info("Test AutoContrast C Op with invalid params")
  174. try:
  175. ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  176. ds = ds.map(input_columns=["image"],
  177. operations=[C.Decode(),
  178. C.Resize((224, 224)),
  179. lambda img: np.array(img[:, :, 0])])
  180. # invalid ignore
  181. ds = ds.map(input_columns="image",
  182. operations=C.AutoContrast(ignore=255.5))
  183. except TypeError as error:
  184. logger.info("Got an exception in DE: {}".format(str(error)))
  185. assert "Argument ignore with value 255.5 is not of type" in str(error)
  186. if __name__ == "__main__":
  187. test_auto_contrast_py(plot=True)
  188. test_auto_contrast_c(plot=True)
  189. test_auto_contrast_one_channel_c(plot=True)
  190. test_auto_contrast_invalid_input_c()