|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """
- Testing AutoContrast op in DE
- """
- import numpy as np
- import mindspore.dataset.engine as de
- import mindspore.dataset.transforms.vision.py_transforms as F
- import mindspore.dataset.transforms.vision.c_transforms as C
- from mindspore import log as logger
- from util import visualize_list, diff_mse, save_and_check_md5
-
- DATA_DIR = "../data/dataset/testImageNetData/train/"
-
- GENERATE_GOLDEN = False
-
-
- def test_auto_contrast_py(plot=False):
- """
- Test AutoContrast
- """
- logger.info("Test AutoContrast Python Op")
-
- # Original Images
- ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
-
- transforms_original = F.ComposeOp([F.Decode(),
- F.Resize((224, 224)),
- F.ToTensor()])
-
- ds_original = ds.map(input_columns="image",
- operations=transforms_original())
-
- ds_original = ds_original.batch(512)
-
- for idx, (image, _) in enumerate(ds_original):
- if idx == 0:
- images_original = np.transpose(image, (0, 2, 3, 1))
- else:
- images_original = np.append(images_original,
- np.transpose(image, (0, 2, 3, 1)),
- axis=0)
-
- # AutoContrast Images
- ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
-
- transforms_auto_contrast = F.ComposeOp([F.Decode(),
- F.Resize((224, 224)),
- F.AutoContrast(),
- F.ToTensor()])
-
- ds_auto_contrast = ds.map(input_columns="image",
- operations=transforms_auto_contrast())
-
- ds_auto_contrast = ds_auto_contrast.batch(512)
-
- for idx, (image, _) in enumerate(ds_auto_contrast):
- if idx == 0:
- images_auto_contrast = np.transpose(image, (0, 2, 3, 1))
- else:
- images_auto_contrast = np.append(images_auto_contrast,
- np.transpose(image, (0, 2, 3, 1)),
- axis=0)
-
- num_samples = images_original.shape[0]
- mse = np.zeros(num_samples)
- for i in range(num_samples):
- mse[i] = diff_mse(images_auto_contrast[i], images_original[i])
- logger.info("MSE= {}".format(str(np.mean(mse))))
-
- # Compare with expected md5 from images
- filename = "autcontrast_01_result_py.npz"
- save_and_check_md5(ds_auto_contrast, filename, generate_golden=GENERATE_GOLDEN)
-
- if plot:
- visualize_list(images_original, images_auto_contrast)
-
-
- def test_auto_contrast_c(plot=False):
- """
- Test AutoContrast C Op
- """
- logger.info("Test AutoContrast C Op")
-
- # AutoContrast Images
- ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
- ds = ds.map(input_columns=["image"],
- operations=[C.Decode(),
- C.Resize((224, 224))])
- python_op = F.AutoContrast()
- c_op = C.AutoContrast()
- transforms_op = F.ComposeOp([lambda img: F.ToPIL()(img.astype(np.uint8)),
- python_op,
- np.array])()
-
- ds_auto_contrast_py = ds.map(input_columns="image",
- operations=transforms_op)
-
- ds_auto_contrast_py = ds_auto_contrast_py.batch(512)
-
- for idx, (image, _) in enumerate(ds_auto_contrast_py):
- if idx == 0:
- images_auto_contrast_py = image
- else:
- images_auto_contrast_py = np.append(images_auto_contrast_py,
- image,
- axis=0)
-
- ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
- ds = ds.map(input_columns=["image"],
- operations=[C.Decode(),
- C.Resize((224, 224))])
-
- ds_auto_contrast_c = ds.map(input_columns="image",
- operations=c_op)
-
- ds_auto_contrast_c = ds_auto_contrast_c.batch(512)
-
- for idx, (image, _) in enumerate(ds_auto_contrast_c):
- if idx == 0:
- images_auto_contrast_c = image
- else:
- images_auto_contrast_c = np.append(images_auto_contrast_c,
- image,
- axis=0)
-
- num_samples = images_auto_contrast_c.shape[0]
- mse = np.zeros(num_samples)
- for i in range(num_samples):
- mse[i] = diff_mse(images_auto_contrast_c[i], images_auto_contrast_py[i])
- logger.info("MSE= {}".format(str(np.mean(mse))))
- np.testing.assert_equal(np.mean(mse), 0.0)
-
- if plot:
- visualize_list(images_auto_contrast_c, images_auto_contrast_py, visualize_mode=2)
-
-
- def test_auto_contrast_one_channel_c(plot=False):
- """
- Test AutoContrast C op with one channel
- """
- logger.info("Test AutoContrast C Op With One Channel Images")
-
- # AutoContrast Images
- ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
- ds = ds.map(input_columns=["image"],
- operations=[C.Decode(),
- C.Resize((224, 224))])
- python_op = F.AutoContrast()
- c_op = C.AutoContrast()
- # not using F.ToTensor() since it converts to floats
- transforms_op = F.ComposeOp([lambda img: (np.array(img)[:, :, 0]).astype(np.uint8),
- F.ToPIL(),
- python_op,
- np.array])()
-
- ds_auto_contrast_py = ds.map(input_columns="image",
- operations=transforms_op)
-
- ds_auto_contrast_py = ds_auto_contrast_py.batch(512)
-
- for idx, (image, _) in enumerate(ds_auto_contrast_py):
- if idx == 0:
- images_auto_contrast_py = image
- else:
- images_auto_contrast_py = np.append(images_auto_contrast_py,
- image,
- axis=0)
-
- ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
- ds = ds.map(input_columns=["image"],
- operations=[C.Decode(),
- C.Resize((224, 224)),
- lambda img: np.array(img[:, :, 0])])
-
- ds_auto_contrast_c = ds.map(input_columns="image",
- operations=c_op)
-
- ds_auto_contrast_c = ds_auto_contrast_c.batch(512)
-
- for idx, (image, _) in enumerate(ds_auto_contrast_c):
- if idx == 0:
- images_auto_contrast_c = image
- else:
- images_auto_contrast_c = np.append(images_auto_contrast_c,
- image,
- axis=0)
-
- num_samples = images_auto_contrast_c.shape[0]
- mse = np.zeros(num_samples)
- for i in range(num_samples):
- mse[i] = diff_mse(images_auto_contrast_c[i], images_auto_contrast_py[i])
- logger.info("MSE= {}".format(str(np.mean(mse))))
- np.testing.assert_equal(np.mean(mse), 0.0)
-
- if plot:
- visualize_list(images_auto_contrast_c, images_auto_contrast_py, visualize_mode=2)
-
-
- def test_auto_contrast_invalid_input_c():
- """
- Test AutoContrast C Op with invalid params
- """
- logger.info("Test AutoContrast C Op with invalid params")
- try:
- ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
- ds = ds.map(input_columns=["image"],
- operations=[C.Decode(),
- C.Resize((224, 224)),
- lambda img: np.array(img[:, :, 0])])
- # invalid ignore
- ds = ds.map(input_columns="image",
- operations=C.AutoContrast(ignore=255.5))
- except TypeError as error:
- logger.info("Got an exception in DE: {}".format(str(error)))
- assert "Argument ignore with value 255.5 is not of type" in str(error)
-
-
- if __name__ == "__main__":
- test_auto_contrast_py(plot=True)
- test_auto_contrast_c(plot=True)
- test_auto_contrast_one_channel_c(plot=True)
- test_auto_contrast_invalid_input_c()
|