# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Testing AutoContrast op in DE """ import numpy as np import mindspore.dataset.engine as de import mindspore.dataset.transforms.vision.py_transforms as F import mindspore.dataset.transforms.vision.c_transforms as C from mindspore import log as logger from util import visualize_list, diff_mse, save_and_check_md5 DATA_DIR = "../data/dataset/testImageNetData/train/" GENERATE_GOLDEN = False def test_auto_contrast_py(plot=False): """ Test AutoContrast """ logger.info("Test AutoContrast Python Op") # Original Images ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False) transforms_original = F.ComposeOp([F.Decode(), F.Resize((224, 224)), F.ToTensor()]) ds_original = ds.map(input_columns="image", operations=transforms_original()) ds_original = ds_original.batch(512) for idx, (image, _) in enumerate(ds_original): if idx == 0: images_original = np.transpose(image, (0, 2, 3, 1)) else: images_original = np.append(images_original, np.transpose(image, (0, 2, 3, 1)), axis=0) # AutoContrast Images ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False) transforms_auto_contrast = F.ComposeOp([F.Decode(), F.Resize((224, 224)), F.AutoContrast(), F.ToTensor()]) ds_auto_contrast = ds.map(input_columns="image", operations=transforms_auto_contrast()) ds_auto_contrast = ds_auto_contrast.batch(512) for idx, (image, _) in enumerate(ds_auto_contrast): if idx == 0: images_auto_contrast = np.transpose(image, (0, 2, 3, 1)) else: images_auto_contrast = np.append(images_auto_contrast, np.transpose(image, (0, 2, 3, 1)), axis=0) num_samples = images_original.shape[0] mse = np.zeros(num_samples) for i in range(num_samples): mse[i] = diff_mse(images_auto_contrast[i], images_original[i]) logger.info("MSE= {}".format(str(np.mean(mse)))) # Compare with expected md5 from images filename = "autcontrast_01_result_py.npz" save_and_check_md5(ds_auto_contrast, filename, generate_golden=GENERATE_GOLDEN) if plot: visualize_list(images_original, images_auto_contrast) def test_auto_contrast_c(plot=False): """ Test AutoContrast C Op """ logger.info("Test AutoContrast C Op") # AutoContrast Images ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False) ds = ds.map(input_columns=["image"], operations=[C.Decode(), C.Resize((224, 224))]) python_op = F.AutoContrast() c_op = C.AutoContrast() transforms_op = F.ComposeOp([lambda img: F.ToPIL()(img.astype(np.uint8)), python_op, np.array])() ds_auto_contrast_py = ds.map(input_columns="image", operations=transforms_op) ds_auto_contrast_py = ds_auto_contrast_py.batch(512) for idx, (image, _) in enumerate(ds_auto_contrast_py): if idx == 0: images_auto_contrast_py = image else: images_auto_contrast_py = np.append(images_auto_contrast_py, image, axis=0) ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False) ds = ds.map(input_columns=["image"], operations=[C.Decode(), C.Resize((224, 224))]) ds_auto_contrast_c = ds.map(input_columns="image", operations=c_op) ds_auto_contrast_c = ds_auto_contrast_c.batch(512) for idx, (image, _) in enumerate(ds_auto_contrast_c): if idx == 0: images_auto_contrast_c = image else: images_auto_contrast_c = np.append(images_auto_contrast_c, image, axis=0) num_samples = images_auto_contrast_c.shape[0] mse = np.zeros(num_samples) for i in range(num_samples): mse[i] = diff_mse(images_auto_contrast_c[i], images_auto_contrast_py[i]) logger.info("MSE= {}".format(str(np.mean(mse)))) np.testing.assert_equal(np.mean(mse), 0.0) if plot: visualize_list(images_auto_contrast_c, images_auto_contrast_py, visualize_mode=2) def test_auto_contrast_one_channel_c(plot=False): """ Test AutoContrast C op with one channel """ logger.info("Test AutoContrast C Op With One Channel Images") # AutoContrast Images ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False) ds = ds.map(input_columns=["image"], operations=[C.Decode(), C.Resize((224, 224))]) python_op = F.AutoContrast() c_op = C.AutoContrast() # not using F.ToTensor() since it converts to floats transforms_op = F.ComposeOp([lambda img: (np.array(img)[:, :, 0]).astype(np.uint8), F.ToPIL(), python_op, np.array])() ds_auto_contrast_py = ds.map(input_columns="image", operations=transforms_op) ds_auto_contrast_py = ds_auto_contrast_py.batch(512) for idx, (image, _) in enumerate(ds_auto_contrast_py): if idx == 0: images_auto_contrast_py = image else: images_auto_contrast_py = np.append(images_auto_contrast_py, image, axis=0) ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False) ds = ds.map(input_columns=["image"], operations=[C.Decode(), C.Resize((224, 224)), lambda img: np.array(img[:, :, 0])]) ds_auto_contrast_c = ds.map(input_columns="image", operations=c_op) ds_auto_contrast_c = ds_auto_contrast_c.batch(512) for idx, (image, _) in enumerate(ds_auto_contrast_c): if idx == 0: images_auto_contrast_c = image else: images_auto_contrast_c = np.append(images_auto_contrast_c, image, axis=0) num_samples = images_auto_contrast_c.shape[0] mse = np.zeros(num_samples) for i in range(num_samples): mse[i] = diff_mse(images_auto_contrast_c[i], images_auto_contrast_py[i]) logger.info("MSE= {}".format(str(np.mean(mse)))) np.testing.assert_equal(np.mean(mse), 0.0) if plot: visualize_list(images_auto_contrast_c, images_auto_contrast_py, visualize_mode=2) def test_auto_contrast_invalid_input_c(): """ Test AutoContrast C Op with invalid params """ logger.info("Test AutoContrast C Op with invalid params") try: ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False) ds = ds.map(input_columns=["image"], operations=[C.Decode(), C.Resize((224, 224)), lambda img: np.array(img[:, :, 0])]) # invalid ignore ds = ds.map(input_columns="image", operations=C.AutoContrast(ignore=255.5)) except TypeError as error: logger.info("Got an exception in DE: {}".format(str(error))) assert "Argument ignore with value 255.5 is not of type" in str(error) if __name__ == "__main__": test_auto_contrast_py(plot=True) test_auto_contrast_c(plot=True) test_auto_contrast_one_channel_c(plot=True) test_auto_contrast_invalid_input_c()