You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 4.3 kB

4 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394
  1. # Copyright 2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # less required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import os
  16. import argparse
  17. import ast
  18. import mindspore
  19. import mindspore.nn as nn
  20. import mindspore.common.dtype as mstype
  21. from mindspore import Tensor, Model, context
  22. from mindspore.context import ParallelMode
  23. from mindspore.communication.management import init, get_rank, get_group_size
  24. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  25. from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, LossMonitor, TimeMonitor
  26. from src.dataset import create_dataset
  27. from src.unet3d_model import UNet3d
  28. from src.config import config as cfg
  29. from src.lr_schedule import dynamic_lr
  30. from src.loss import SoftmaxCrossEntropyWithLogits
  31. device_id = int(os.getenv('DEVICE_ID'))
  32. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, \
  33. device_id=device_id)
  34. mindspore.set_seed(1)
  35. def get_args():
  36. parser = argparse.ArgumentParser(description='Train the UNet3D on images and target masks')
  37. parser.add_argument('--data_url', dest='data_url', type=str, default='', help='image data directory')
  38. parser.add_argument('--seg_url', dest='seg_url', type=str, default='', help='seg data directory')
  39. parser.add_argument('--run_distribute', dest='run_distribute', type=ast.literal_eval, default=False, \
  40. help='Run distribute, default: false')
  41. return parser.parse_args()
  42. def train_net(data_dir,
  43. seg_dir,
  44. run_distribute,
  45. config=None):
  46. if run_distribute:
  47. init()
  48. rank_id = get_rank()
  49. rank_size = get_group_size()
  50. parallel_mode = ParallelMode.DATA_PARALLEL
  51. context.set_auto_parallel_context(parallel_mode=parallel_mode,
  52. device_num=rank_size,
  53. gradients_mean=True)
  54. else:
  55. rank_id = 0
  56. rank_size = 1
  57. train_dataset = create_dataset(data_path=data_dir, seg_path=seg_dir, config=config, \
  58. rank_size=rank_size, rank_id=rank_id, is_training=True)
  59. train_data_size = train_dataset.get_dataset_size()
  60. print("train dataset length is:", train_data_size)
  61. network = UNet3d(config=config)
  62. loss = SoftmaxCrossEntropyWithLogits()
  63. lr = Tensor(dynamic_lr(config, train_data_size), mstype.float32)
  64. optimizer = nn.Adam(params=network.trainable_params(), learning_rate=lr)
  65. scale_manager = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
  66. network.set_train()
  67. model = Model(network, loss_fn=loss, optimizer=optimizer, loss_scale_manager=scale_manager)
  68. time_cb = TimeMonitor(data_size=train_data_size)
  69. loss_cb = LossMonitor()
  70. ckpt_config = CheckpointConfig(save_checkpoint_steps=train_data_size,
  71. keep_checkpoint_max=config.keep_checkpoint_max)
  72. ckpoint_cb = ModelCheckpoint(prefix='{}'.format(config.model),
  73. directory='./ckpt_{}/'.format(device_id),
  74. config=ckpt_config)
  75. callbacks_list = [loss_cb, time_cb, ckpoint_cb]
  76. print("============== Starting Training ==============")
  77. model.train(config.epoch_size, train_dataset, callbacks=callbacks_list)
  78. print("============== End Training ==============")
  79. if __name__ == '__main__':
  80. args = get_args()
  81. print("Training setting:", args)
  82. train_net(data_dir=args.data_url,
  83. seg_dir=args.seg_url,
  84. run_distribute=args.run_distribute,
  85. config=cfg)