# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # less required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import os import argparse import ast import mindspore import mindspore.nn as nn import mindspore.common.dtype as mstype from mindspore import Tensor, Model, context from mindspore.context import ParallelMode from mindspore.communication.management import init, get_rank, get_group_size from mindspore.train.loss_scale_manager import FixedLossScaleManager from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, LossMonitor, TimeMonitor from src.dataset import create_dataset from src.unet3d_model import UNet3d from src.config import config as cfg from src.lr_schedule import dynamic_lr from src.loss import SoftmaxCrossEntropyWithLogits device_id = int(os.getenv('DEVICE_ID')) context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, \ device_id=device_id) mindspore.set_seed(1) def get_args(): parser = argparse.ArgumentParser(description='Train the UNet3D on images and target masks') parser.add_argument('--data_url', dest='data_url', type=str, default='', help='image data directory') parser.add_argument('--seg_url', dest='seg_url', type=str, default='', help='seg data directory') parser.add_argument('--run_distribute', dest='run_distribute', type=ast.literal_eval, default=False, \ help='Run distribute, default: false') return parser.parse_args() def train_net(data_dir, seg_dir, run_distribute, config=None): if run_distribute: init() rank_id = get_rank() rank_size = get_group_size() parallel_mode = ParallelMode.DATA_PARALLEL context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=rank_size, gradients_mean=True) else: rank_id = 0 rank_size = 1 train_dataset = create_dataset(data_path=data_dir, seg_path=seg_dir, config=config, \ rank_size=rank_size, rank_id=rank_id, is_training=True) train_data_size = train_dataset.get_dataset_size() print("train dataset length is:", train_data_size) network = UNet3d(config=config) loss = SoftmaxCrossEntropyWithLogits() lr = Tensor(dynamic_lr(config, train_data_size), mstype.float32) optimizer = nn.Adam(params=network.trainable_params(), learning_rate=lr) scale_manager = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False) network.set_train() model = Model(network, loss_fn=loss, optimizer=optimizer, loss_scale_manager=scale_manager) time_cb = TimeMonitor(data_size=train_data_size) loss_cb = LossMonitor() ckpt_config = CheckpointConfig(save_checkpoint_steps=train_data_size, keep_checkpoint_max=config.keep_checkpoint_max) ckpoint_cb = ModelCheckpoint(prefix='{}'.format(config.model), directory='./ckpt_{}/'.format(device_id), config=ckpt_config) callbacks_list = [loss_cb, time_cb, ckpoint_cb] print("============== Starting Training ==============") model.train(config.epoch_size, train_dataset, callbacks=callbacks_list) print("============== End Training ==============") if __name__ == '__main__': args = get_args() print("Training setting:", args) train_net(data_dir=args.data_url, seg_dir=args.seg_url, run_distribute=args.run_distribute, config=cfg)