|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # less required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import os
- import argparse
- import ast
- import mindspore
- import mindspore.nn as nn
- import mindspore.common.dtype as mstype
- from mindspore import Tensor, Model, context
- from mindspore.context import ParallelMode
- from mindspore.communication.management import init, get_rank, get_group_size
- from mindspore.train.loss_scale_manager import FixedLossScaleManager
- from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, LossMonitor, TimeMonitor
- from src.dataset import create_dataset
- from src.unet3d_model import UNet3d
- from src.config import config as cfg
- from src.lr_schedule import dynamic_lr
- from src.loss import SoftmaxCrossEntropyWithLogits
-
- device_id = int(os.getenv('DEVICE_ID'))
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, \
- device_id=device_id)
- mindspore.set_seed(1)
-
- def get_args():
- parser = argparse.ArgumentParser(description='Train the UNet3D on images and target masks')
- parser.add_argument('--data_url', dest='data_url', type=str, default='', help='image data directory')
- parser.add_argument('--seg_url', dest='seg_url', type=str, default='', help='seg data directory')
- parser.add_argument('--run_distribute', dest='run_distribute', type=ast.literal_eval, default=False, \
- help='Run distribute, default: false')
- return parser.parse_args()
-
- def train_net(data_dir,
- seg_dir,
- run_distribute,
- config=None):
- if run_distribute:
- init()
- rank_id = get_rank()
- rank_size = get_group_size()
- parallel_mode = ParallelMode.DATA_PARALLEL
- context.set_auto_parallel_context(parallel_mode=parallel_mode,
- device_num=rank_size,
- gradients_mean=True)
- else:
- rank_id = 0
- rank_size = 1
- train_dataset = create_dataset(data_path=data_dir, seg_path=seg_dir, config=config, \
- rank_size=rank_size, rank_id=rank_id, is_training=True)
- train_data_size = train_dataset.get_dataset_size()
- print("train dataset length is:", train_data_size)
-
- network = UNet3d(config=config)
-
- loss = SoftmaxCrossEntropyWithLogits()
- lr = Tensor(dynamic_lr(config, train_data_size), mstype.float32)
- optimizer = nn.Adam(params=network.trainable_params(), learning_rate=lr)
- scale_manager = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
- network.set_train()
-
- model = Model(network, loss_fn=loss, optimizer=optimizer, loss_scale_manager=scale_manager)
-
- time_cb = TimeMonitor(data_size=train_data_size)
- loss_cb = LossMonitor()
- ckpt_config = CheckpointConfig(save_checkpoint_steps=train_data_size,
- keep_checkpoint_max=config.keep_checkpoint_max)
- ckpoint_cb = ModelCheckpoint(prefix='{}'.format(config.model),
- directory='./ckpt_{}/'.format(device_id),
- config=ckpt_config)
- callbacks_list = [loss_cb, time_cb, ckpoint_cb]
- print("============== Starting Training ==============")
- model.train(config.epoch_size, train_dataset, callbacks=callbacks_list)
- print("============== End Training ==============")
-
- if __name__ == '__main__':
- args = get_args()
- print("Training setting:", args)
- train_net(data_dir=args.data_url,
- seg_dir=args.seg_url,
- run_distribute=args.run_distribute,
- config=cfg)
|