|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199 |
- # Contents
-
- - [FCN-4 Description](#fcn-4-description)
- - [Model Architecture](#model-architecture)
- - [Features](#features)
- - [Mixed Precision](#mixed-precision)
- - [Environment Requirements](#environment-requirements)
- - [Quick Start](#quick-start)
- - [Script Description](#script-description)
- - [Script and Sample Code](#script-and-sample-code)
- - [Script Parameters](#script-parameters)
- - [Training Process](#training-process)
- - [Training](#training)
- - [Evaluation Process](#evaluation-process)
- - [Evaluation](#evaluation)
- - [Model Description](#model-description)
- - [Performance](#performance)
- - [Evaluation Performance](#evaluation-performance)
- - [ModelZoo Homepage](#modelzoo-homepage)
-
- ## [FCN-4 Description](#contents)
-
- This repository provides a script and recipe to train the FCN-4 model to achieve state-of-the-art accuracy.
-
- [Paper](https://arxiv.org/abs/1606.00298): `"Keunwoo Choi, George Fazekas, and Mark Sandler, “Automatic tagging using deep convolutional neural networks,” in International Society of Music Information Retrieval Conference. ISMIR, 2016."
-
- ## [Model Architecture](#contents)
-
- FCN-4 is a convolutional neural network architecture, its name FCN-4 comes from the fact that it has 4 layers. Its layers consists of Convolutional layers, Max Pooling layers, Activation layers, Fully connected layers.
-
- ## [Features](#contents)
-
- ### Mixed Precision
-
- The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
- For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’.
-
- ## [Environment Requirements](#contents)
-
- - Hardware(Ascend
- - Prepare hardware environment with Ascend processor.
- - Framework
- - [MindSpore](https://www.mindspore.cn/install/en)
- - For more information, please check the resources below:
- - [MindSpore tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
-
- ## [Quick Start](#contents)
-
- After installing MindSpore via the official website, you can start training and evaluation as follows:
-
- ### 1. Download and preprocess the dataset
-
- 1. down load the classification dataset (for instance, MagnaTagATune Dataset, Million Song Dataset, etc)
- 2. Extract the dataset
- 3. The information file of each clip should contain the label and path. Please refer to the annotations_final.csv in MagnaTagATune Dataset.
- 4. The provided pre-processing script use MagnaTagATune Dataset as an example. Please modify the code accprding to your own need.
-
- ### 2. setup parameters (src/config.py)
-
- ### 3. Train
-
- after having your dataset, first convert the audio clip into mindrecord dataset by using the following codes
-
- ```shell
- python pre_process_data.py --device_id 0
- ```
-
- Then, you can start training the model by using the following codes
-
- ```shell
- SLOG_PRINT_TO_STDOUT=1 python train.py --device_id 0
- ```
-
- ### 4. Test
-
- Then you can test your model
-
- ```shell
- SLOG_PRINT_TO_STDOUT=1 python eval.py --device_id 0
- ```
-
- ## [Script Description](#contents)
-
- ### [Script and Sample Code](#contents)
-
- ```shell
- ├── model_zoo
- ├── README.md // descriptions about all the models
- ├── music_auto_tagging
- ├── README.md // descriptions about googlenet
- ├── scripts
- │ ├──run_train.sh // shell script for distributed on Ascend
- │ ├──run_eval.sh // shell script for evaluation on Ascend
- │ ├──run_process_data.sh // shell script for convert audio clips to mindrecord
- ├── src
- │ ├──dataset.py // creating dataset
- │ ├──pre_process_data.py // pre-process dataset
- │ ├──musictagger.py // googlenet architecture
- │ ├──config.py // parameter configuration
- │ ├──loss.py // loss function
- │ ├──tag.txt // tag for each number
- ├── train.py // training script
- ├── eval.py // evaluation script
- ├── export.py // export model in air format
- ```
-
- ### [Script Parameters](#contents)
-
- Parameters for both training and evaluation can be set in config.py
-
- - config for FCN-4
-
- ```python
-
- 'num_classes': 50 # number of tagging classes
- 'num_consumer': 4 # file number for mindrecord
- 'get_npy': 1 # mode for converting to npy, default 1 in this case
- 'get_mindrecord': 1 # mode for converting npy file into mindrecord file,default 1 in this case
- 'audio_path': "/dev/data/Music_Tagger_Data/fea/" # path to audio clips
- 'npy_path': "/dev/data/Music_Tagger_Data/fea/" # path to numpy
- 'info_path': "/dev/data/Music_Tagger_Data/fea/" # path to info_name, which provide the label of each audio clips
- 'info_name': 'annotations_final.csv' # info_name
- 'device_target': 'Ascend' # device running the program
- 'device_id': 0 # device ID used to train or evaluate the dataset. Ignore it when you use run_train.sh for distributed training
- 'mr_path': '/dev/data/Music_Tagger_Data/fea/' # path to mindrecord
- 'mr_name': ['train', 'val'] # mindrecord name
-
- 'pre_trained': False # whether training based on the pre-trained model
- 'lr': 0.0005 # learning rate
- 'batch_size': 32 # training batch size
- 'epoch_size': 10 # total training epochs
- 'loss_scale': 1024.0 # loss scale
- 'num_consumer': 4 # file number for mindrecord
- 'mixed_precision': False # if use mix precision calculation
- 'train_filename': 'train.mindrecord0' # file name of the train mindrecord data
- 'val_filename': 'val.mindrecord0' # file name of the evaluation mindrecord data
- 'data_dir': '/dev/data/Music_Tagger_Data/fea/' # directory of mindrecord data
- 'device_target': 'Ascend' # device running the program
- 'device_id': 0, # device ID used to train or evaluate the dataset. Ignore it when you use run_train.sh for distributed training
- 'keep_checkpoint_max': 10, # only keep the last keep_checkpoint_max checkpoint
- 'save_step': 2000, # steps for saving checkpoint
- 'checkpoint_path': '/dev/data/Music_Tagger_Data/model/', # the absolute full path to save the checkpoint file
- 'prefix': 'MusicTagger', # prefix of checkpoint
- 'model_name': 'MusicTagger_3-50_543.ckpt', # checkpoint name
- ```
-
- ### [Training Process](#contents)
-
- #### Training
-
- - running on Ascend
-
- ```shell
- python train.py > train.log 2>&1 &
- ```
-
- The python command above will run in the background, you can view the results through the file `train.log`.
-
- After training, you'll get some checkpoint files under the script folder by default. The loss value will be achieved as follows:
-
- ```shell
- # grep "loss is " train.log
- epoch: 1 step: 100, loss is 0.23264095
- epoch: 1 step: 200, loss is 0.2013525
- ...
- ```
-
- The model checkpoint will be saved in the set directory.
-
- ### [Evaluation Process](#contents)
-
- #### Evaluation
-
- ## [Model Description](#contents)
-
- ### [Performance](#contents)
-
- #### Evaluation Performance
-
- | Parameters | Ascend |
- | -------------------------- | ----------------------------------------------------------- |
- | Model Version | FCN-4 |
- | Resource | Ascend 910; CPU 2.60GHz, 56cores; Memory 314G; OS Euler2.8 |
- | uploaded Date | 09/11/2020 (month/day/year) |
- | MindSpore Version | r0.7.0 |
- | Training Parameters | epoch=10, steps=534, batch_size = 32, lr=0.005 |
- | Optimizer | Adam |
- | Loss Function | Binary cross entropy |
- | outputs | probability |
- | Loss | AUC 0.909 |
- | Speed | 1pc: 160 samples/sec; |
- | Total time | 1pc: 20 mins; |
- | Checkpoint for Fine tuning | 198.73M(.ckpt file) |
- | Scripts | [music_auto_tagging script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/audio/fcn-4) |
-
- ## [ModelZoo Homepage](#contents)
-
- Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|